首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The purpose of the present studies was to assess the functional coupling between the parasternal intercostals and the triangularis sterni (transversus thoracis) muscles during resting breathing, and we measured the electrical activity and the respiratory changes in length of these two muscles in 13 supine anesthetized dogs. The changes in muscle length were defined relative to their respective in situ relaxation length (Lr). During inspiration, the parasternal intercostals were active and shortened below Lr, causing the triangularis sterni to be passively stretched above Lr. Shortly after the cessation of parasternal contraction, the triangularis sterni became active and shortened below Lr, and in nine animals this active shortening was associated with a forcible distension of the parasternal intercostals above Lr. Deactivation of the triangularis sterni at end expiration caused both muscles to return to their respective Lr. This pattern was essentially unchanged after supplemental anesthesia and bilateral phrenicotomy. We conclude that in dogs breathing quietly the length of the rib cage muscles during the expiratory pause is not passively determined as conventionally thought.  相似文献   

2.
We have previously demonstrated that the shortening of the canine parasternal intercostals during inspiration results primarily from the muscles' own activation (J. Appl. Physiol. 64: 1546-1553, 1988). In the present studies, we have tested the hypothesis that other inspiratory rib cage muscles may contribute to the parasternal inspiratory shortening. Eight supine, spontaneously breathing dogs were studied. Changes in length of the third or fourth right parasternal intercostal were measured during quiet breathing and during single-breath airway occlusion first with the animal intact, then after selective denervation of the muscle, and finally after bilateral phrenicotomy. Denervating the parasternal virtually eliminated the muscle shortening during quiet inspiration and caused the muscle to lengthen during occluded breaths. After phrenicotomy, however, the parasternal, while being denervated, shortened again a significant amount during both quiet inspiration and occluded breaths. These data thus confirm that a component of the parasternal inspiratory shortening is not active and results from the action of other inspiratory rib cage muscles. Additional studies in four animals demonstrated that the scalene and serratus muscles do not play any role in this phenomenon; it must therefore result from the action of intrinsic rib cage muscles.  相似文献   

3.
4.
We have tested the possibility that the electromyographic (EMG) activity present in the parasternal intercostal muscles during quiet inspiration was reflexive, rather than agonistic, in nature. Using concentric needle electrodes we measured parasternal EMG activity in four normal subjects during various inspiratory maneuvers. We found that 1) phasic inspiratory activity was invariably present in the parasternal intercostals during quiet breathing, 2) the parasternal EMG activity was generally increased during attempts to perform the tidal breathing maneuver with the diaphragm alone, 3) parasternal EMG activity was markedly decreased or suppressed in the presence of rib cage distortion during diaphragmatic isovolume maneuvers, and 4) that EMG activity could not be voluntarily suppressed during breathing unless the inspired volume was trivial. We conclude that the parasternal EMG activity detected during quiet inspiration in the normal subjects depends on a central involuntary mechanism and is not related to activation of intercostal mechanoreceptors.  相似文献   

5.
6.
7.
In the dog, the inspiratory mechanical advantage of the parasternal intercostals shows a marked spatial heterogeneity, whereas the expiratory mechanical advantage of the triangularis sterni is relatively uniform. The contribution of a particular respiratory muscle to lung volume expansion during breathing, however, depends both on the mechanical advantage of the muscle and on its neural input. To evaluate the distribution of neural input across the canine parasternal intercostals and triangularis sterni, we have examined the distribution of metabolic activity among these muscles in seven spontaneously breathing animals by measuring the uptake of the glucose tracer analog [(18)F]fluorodeoxyglucose (FDG). FDG uptake in any given parasternal intercostal was greatest in the medial bundles and decreased rapidly toward the costochondral junctions. In addition, FDG uptake in the medial parasternal bundles increased from the first to the second interspace, plateaued in the second through fifth interspaces, and then decreased progressively toward the eighth interspace. In contrast, uptake in the triangularis sterni showed no significant rostrocaudal gradient. These results overall strengthen the idea that the spatial distribution of neural input within a particular set of respiratory muscles is closely matched with the spatial distribution of mechanical advantage.  相似文献   

8.
The interosseous external intercostal (EI) muscles of the upper rib cage are electrically active during inspiration, but the mechanical consequence of their activation is unclear. In 16 anesthetized dogs, we simultaneously measured EI (3rd and 4th interspaces) and parasternal intercostal (PA) (3rd interspace) electromyogram and length. Muscle length was measured by sonomicrometry and expressed as a percentage of resting length (%LR). During resting breathing, each muscle was electrically active and shortened to a similar extent. Sequential EI muscle denervation (3rd and 4th interspaces) followed by PA denervation (3rd interspace) demonstrated significant reductions in the degree of inspiratory shortening for each muscle. Mean EI muscle shortening of the third and fourth interspaces decreased from -3.4 +/- 0.5 and -3.0 +/- 0.4% LR (SE) under control conditions to -0.2 +/- 0.2 and -0.8 +/- 0.3% LR, respectively, after selective denervation of each of these muscles (P less than 0.001 for each). After selective denervation of the PA muscle, its shortening decreased from -3.5 +/- 0.3 to +0.6% LR (SE) (P less than 0.001). PA muscle denervation also caused the EI muscle in the third interspace to change from inspiratory shortening of -0.2% to inspiratory lengthening of +0.2% +/- 0.2 (P less than 0.05). We conclude that during eupneic breathing 1) the EI muscles of the upper rib cage, like the PA muscles, are inspiratory agonists and actively contribute to rib cage expansion and 2) PA muscle contraction contributes to EI muscle shortening.  相似文献   

9.
The electrical activity and the respiratory changes in length of the third parasternal intercostal muscle were measured during single-breath airway occlusion in 12 anesthetized, spontaneously breathing dogs in the supine posture. During occluded breaths in the intact animal, the parasternal intercostal was electrically active and shortened while pleural pressure fell. In contrast, after section of the third intercostal nerve at the chondrocostal junction and abolition of parasternal electrical activity, the muscle always lengthened. This inspiratory muscle lengthening must be related to the fall in pleural pressure; it was, however, approximately 50% less than the amount of muscle lengthening produced, for the same fall in pleural pressure, by isolated stimulation of the phrenic nerves. These results indicate that 1) the parasternal inspiratory shortening that occurs during occluded breaths in the dog results primarily from the muscle inspiratory contraction per se, and 2) other muscles of the rib cage, however, contribute to this parasternal shortening by acting on the ribs or the sternum. The present studies also demonstrate the important fact that the parasternal inspiratory contraction in the dog is really agonistic in nature.  相似文献   

10.
The correlation between brain blood flow (BBF) and respiratory neuromotor output, as reflected by diaphragmatic electromyogram (EMG) activity (EMGdi), was studied during wakefulness, rapid-eye-movement (REM) sleep, and non-REM sleep (NREM). Compared with the awake state, mean BBF increased by 4.7% during NREM and by 32.6% during REM (P less than 0.001). Also, surges of BBF during REM occurred during periods of intense phasic activity. EMGdi [peak and peak/inspiratory time (TI)] was highly variable within REM periods but fluctuated as a reciprocal function of simultaneously measured BBf (r = -0.49, P less than 0.001). Furthermore, mean EMGdipeak decreased from NREM to REM in a manner reciprocally related to the corresponding change in BBF (r = -0.77, P = 0.015). These findings suggest that a component of the reduction of respiratory neuromotor output during REM is attributable to increased BBF with consequent relative hypocapnia in the central chemoreceptor environment.  相似文献   

11.
The inspiratory phase of coughs often consists of large inspired volumes and increased motor discharge to the costal diaphragm. Furthermore, diaphragm electrical activity may persist into the early expiratory portion of coughs. To examine the role of other inspiratory muscles during coughing, electromyograms (EMG) recorded from the crural diaphragm (Dcr) and parasternal intercostal (PSIC) muscles were compared to EMG of the costal diaphragm (Dco) in anesthetized cats. Tracheal or laryngeal stimulation typically produced a series of coughs, with variable increases in peak inspiratory EMGs of all three muscles. On average, peak inspiratory EMG of Dco increased to 346 +/- 60% of control (P less than 0.001), Dcr to 514 +/- 82% of control (P less than 0.0002), and PSIC to 574 +/- 61% of control (P less than 0.0005). Augmentations of Dcr and PSIC EMG were both significantly greater than of Dco EMG (P less than 0.05 and P less than 0.002, respectively). In most animals, EMG of Dco correlated significantly with EMG of Dcr and of PSIC during different size coughs. Electrical activity of all three muscles persisted into the expiratory portions of many (but not all) coughs. The duration of expiratory activity lasted on average 0.17 +/- 0.03 s for Dco, 0.25 +/- 0.06 s for Dcr, and 0.31 +/- 0.09 s for PSIC. These results suggest that multiple respiratory muscles are recruited during inspiration of coughs, and that the persistence of electrical activity into expiration of coughs is not unique to the costal diaphragm.  相似文献   

12.
13.
14.
We studied the relationship between alae nasi muscle (AN) activation and breathing route in normal subjects during exercise. Nasal and oral airflow were measured simultaneously using a partitioned face mask and were recorded with the AN electromyogram. Subjects breathed via 1) the nose and mouth (NM) 2) the nose only (N), or 3) the mouth only (M). As ventilation (VE) rose progressively, the peak phasic inspiratory AN activity (IAAN) increased for all breathing routes. IAAN during N [11.8 +/- 2.0 arbitrary units (AU)] was greater than during NM (3.3 +/- 1.3 AU) and M (2.4 +/- 1.0 AU; P less than 0.01) measured at the highest common VE (over a 10-l/min range). At the highest 20% of IAAN recorded during NM, the total VE during N (24 +/- 5 l/min). However, for the same IAAN, nasal VE during NM (27 +/- 3 l/min) was similar to that during N. Thus, as ventilation increases during exercise, AN activity and nasal ventilation are tightly correlated, independently of flow through the mouth. This suggests either reflex modulation of AN activity by nasal flow or coordination of AN activation with the flow-partitioning mechanism of the upper airway.  相似文献   

15.
16.
17.
Periodic breathing during sleep   总被引:5,自引:0,他引:5  
  相似文献   

18.
19.
20.
This paper reviewed in short neural and humoral factors which might be responsible for inducing exercise hyperpnea. As one of the neural factors afferent signals which arise in the exercising limbs and are transmitted via group III or IV high threshold sensory fibres were involved. The other neural factor is command signals originating in the central nervous system and being fed onto the respiratory center. Hypothalamic locomotor region is assumed to be a possible locus to integrate these peripheral and central neural signals. There are enough evidences to believe that humoral factors mediated via cardiac output is also essential for the hyperpnea. Changes in VCO2 is well correlated with those of VE in dynamic as well as in steady-state response. Oscillations in PaCO2 can be assumed to play a role to link metabolic CO2 changes to those in ventilation. Thus, no single factor can explain the whole process of exercise hyperpnea. Poon's optimization model may give a key to integrate complicated and coflicting experimental results in a unique concept.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号