首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent clinical trials have shown that the new generation of acellular pertussis vaccines (Pa) can confer protection against whooping cough with negligible adverse reactions. We have compared the effects of pertussis whole cell and acellular vaccines on pulmonary immune responses after aerosol challenge in a murine model of infection. Mice were vaccinated with PBS, Pw or Pa and challenged with Bordetella pertussis by the aerosol route. Cytokine gene expression was analysed from lung tissue and cells; lung lymphocytes were re-stimulated in vitro and cytokines produced measured. The results obtained are consistent with the proposal that a strong Th-1 response is associated with bacterial clearance in both the non-vaccinated and Pw vaccinated mice. The acellular vaccine treated mice cleared the bacterial challenge (with an intermediate efficacy) in the presence of low levels of any of the cytokines assessed. This suggests that Pa protects via a Th-2 independent mechanism.  相似文献   

2.
Li Q  Zhu Y  Chu J  Wang Y  Xu Y  Hou Q  Zhang S  Guo X 《Microbiology and immunology》2006,50(12):929-936
A recombinant pertussis DNA vaccine was described here with its immunogenicity and the ability to induce protection against B. pertussis infection in mice. Three immunodominant antigen gene fragments of pertussis, pertussis toxin subunit 1 (pts1), fragments of pertactin (prn) and filamentous hemagglutinin (fha), were recombined as fragment pts1-prn-fha named ppf, and it was cloned to plasmid pVAX1 as pVAX1/ppf. Compared to those injected with pVAX1, the mice injected with pVAX1/ppf significantly elicited more antigen specific antibody anti-PTS1, anti-PRN, anti-FHA and cytokine IL-10, IFN-gamma. When pGM-CSF was coinjected with pVAX1/ppf, the mice showed significantly increases of the three antibodies and cytokine IL-10, IL-4, IFN-gamma and TNF-alpha compared to those injected with pVAX1 only. The mice in group pVAX1/ppf & pGM-CSF, in particular; induced much more anti-PTS1, IL-4 and TNF-alpha than those in group pVAX1/ppf. In the intracerebral mouse protection test, the mice immunized with pVAX1/ppf or pVAX1/ppf & pGM-CSF induced protection to a lethal dose of B. pertussis. The results indicate that recombinant DNA vaccine and pGM-CSF coinjection can induce protective immunity against B. pertussis, demonstrating a valuable method to prevent pertussis.  相似文献   

3.
《Biologicals》2014,42(2):101-108
Speculation that the Japanese modified intra-cerebral challenge assay, which is used in several countries for control of acellular pertussis vaccines, depends on the presence of small amounts of active pertussis toxin led to an assumption that it may not be appropriate for highly toxoided or genetically detoxified vaccines. Consequently, at the recommendation of a World Health Organisation AD Hoc Working Group on mouse protection models for testing and control of acellular pertussis vaccine, the effect of pertussis toxin on the modified intra-cerebral challenge assay (modified Kendrick, MICA) was evaluated in an international collaborative study. Results of this study showed that for genetically detoxified vaccines both with and without active pertussis toxin the MICA clearly distinguished mice vaccinated with acellular vaccines from unvaccinated mice and gave a significant dose–response relationship. However, vaccine samples containing active pertussis toxin (5 or 50 ng/single human dose) appeared to be more potent than the equivalent sample without active pertussis toxin. Similar results were also given by two respiratory infection models (intranasal and aerosol) included in the study. The results also indicated that the effect of pertussis toxin may vary depending on mouse strain.  相似文献   

4.
The in vitro response of human B- and T-lymphocytes to the acellular vaccines JNIH-6 (containing pertussis toxoid and filamentous hemagglutinin), and JNIH-7 (containing pertussis toxoid), and to the purified components JNIH-4 (filamentous hemagglutinin) and JNIH-5 (pertussis toxin) was investigated. Pertussis toxoid and filamentous hemagglutinin induced specific Ig synthesis in vitro in lymphocytes obtained from convalescent pertussis patients as target cells. The antigen-dependent Ig production was demonstrated in lymphocyte culture supernatants by ELISA techniques and by a chinese hamster ovary cell toxin neutralization assay. Particularly with JNIH-4, -6 and -7, high antibody titers were obtained. At optimal antigen concentrations a marked lymphocyte blast transformation was found in lymphocyte cultures from whooping cough patients, but not in cultures of lymphocytes obtained from healthy volunteers. At high concentrations native pertussis toxin as well as the B oligomer (S2-5) of the toxin induced a strong proliferation of patient as well as control lymphocytes, indicating non-specific mitogenic activity. At lower concentrations lymphocyte blast transformation was seen in patient cultures only, which indicates an antigen-specific T-cell response. The A protomer (S1), dimer 1 (S2 + 4) and dimer 2 (S3 + 4) induced proliferation of patient lymphocytes, which demonstrates the presence of T-cell epitopes on these peptides. The in vitro B-cell response and the lymphocyte blast transformation assay are both useful tools for estimating the potency of acellular pertussis vaccines in man. Spontaneously acquired and vaccine induced immunity to Bordetella pertussis can be investigated at the level of B- and T-lymphocytes.  相似文献   

5.
Abstract To investigate the high prevalence among infants of antibodies to Bordetella pertussis adenylate cyclase toxin (ACT), cord-blood sera were examined for antibodies to ACT, filamentous hemagglutinin (FHA) and pertussis toxin (PT) using immunoblot analysis. Antibodies reactive with ACT were the most prevalent in neonatal sera. Similar reactivity of IgG with ACT was found in each sample of a given neonatal-maternal pair, yet IgM reactive with ACT was virtually absent in neonatal sera, suggesting that antibodies to ACT are maternally derived. Antibodies to ACT might come from infection or childhood vaccination of the mothers since pertussis vaccines from all US manufacturers elicited antibodies to ACT in mice. Alternatively, these antibodies may have been elicited by a cross-reactive antigen such as Escherichia coli α-hemolysin, since all of the neonatal and maternal sera contained antibodies reactive with α-hemolysin.  相似文献   

6.
Pertussigen [pertussis toxin (Ptx)] from Bordetella pertussis, when detoxified, induces protection in mice to intracerebral challenge (ic) with virulent B. pertussis. In its native form, minute nonprotective doses promote the development of immunity induced by other antigens of B. pertussis. As little as 4 ng of Ptx, given with a nonprotective dose of 8 X 10(7) killed cells of the phase III Sakairi strain, promoted detectable protection to ic challenge. Native Ptx in doses of 0.4 to 400 ng did not protect mice, and vaccines made from strains not producing Ptx induced only weak protection. The marked enhancing action of Ptx was also observed with 5 micrograms of purified filamentous hemagglutinin and with vaccines made from other species of the Bordetella genus, such as B. parapertussis and B. bronchiseptica, but it was not observed with B. pertussis endotoxin. In addition, Ptx was still effective when given as late as 7 days after the vaccine. Antibodies to surface antigens of the challenge strain were demonstrated in sera of mice immunized with vaccines prepared with the different Bordetella species tested, but antibodies to Ptx were detected only in the sera of mice immunized with the wild-type B. pertussis strains. Glutaraldehyde detoxified Ptx does not have this action. Pretreatment of normal mice with Ptx, also enhanced the protective action of a mouse antiserum to a wild-type strain of B. pertussis. These observations show that antigens other than Ptx are responsible for the protection, and that Ptx acts non-specifically to enhance the mouse protective action of those antigens.  相似文献   

7.
The currently used pertussis vaccines are highly efficacious; however, neonates are susceptible to whooping cough up to the sixth month. In agreement, DTP-immunized neonate mice were not protected against intracerebral challenge with Bordetella pertussis. Neonate mice immunized with either DTP or a recombinant-BCG strain expressing the genetically detoxified S1 subunit of pertussis toxin do not show a humoral immune response against PT. On the other hand, rBCG-Pertussis induces higher PT-specific IFN-gamma production and an increase in both IFN-gamma(+) and TNF-alpha(+)-CD4(+)-T cells than the whole cell pertussis vaccine and confers protection against a lethal intracerebral challenge with B. pertussis.  相似文献   

8.
Athymic (nu/nu) and euthymic (+/nu) BALB/c mice were immunized with a whole cell pertussis vaccine or with an acellular vaccine which contained detoxified pertussis toxin (PT) and filamentous hemagglutinin (FHA). Only the euthymic mice were protected against intracerebral challenge with virulent Bordetella pertussis which implies involvement of T-cells. As a cell transfer from mice immunized with whole cell or acellular vaccine prior to the challenge did not protect naive euthymic recipients, cellular immunity seems to be non-protective as an effector mechanism. Mice could be protected passively against a challenge by administration of immune sera. Therefore, T-cell dependent humoral immune responses to B. pertussis appear to be crucial for protection. The humoral response was further studied with athymic and euthymic mice. In euthymic mice the whole cell vaccine induced antibodies to FHA, pililipopolysaccharides (LPS) and an outer membrane protein (OMP) preparation, whereas the acellular vaccine induced antibodies to PT, FHA and OMP. Both IgM and IgG could be detected. From the nude mice only those immunized with the whole cell vaccine showed an antibody response which consisted of low titres of IgM directed to LPS. Sera from both +/nu and nu/nu mice immunized with the whole cell vaccine were bactericidal in vitro. These data demonstrate that in the mouse model protection to intracerebral challenge with B. pertussis is T-cell dependent as is the humoral response to PT, FHA, OMP and pili. The T-independent B-cell activation by the whole cell preparation is due to the presence of LPS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
An acellular pertussis vaccine manufactured by Biken was investigated for purity, potency and toxicity. The vaccine was composed of almost equal proportions of pertussis toxin (PT) and filamentous hemagglutinin (FHA). The purity of the vaccine was 97-99%. The protective effects of component vaccines containing various ratios of PT and FHA were tested and it was found that the ratio of 1:1 provided the most effective vaccine.  相似文献   

10.
The quality control of acellular pertussis vaccines presents particular problems related to the differences in composition and method of detoxification used in the various type of preparation. These vaccines are not amenable to potency assay by the active mouse protection test used for whole-cell pertussis vaccines and assurance of protective activity is problematic.In contrast, monitoring of these vaccines for safety is relatively straightforward and is centred on assays for the lipooligosaccharide endotoxin, active pertussis toxin and absence of reversion to toxicity of detoxified product. The absence of heat-labile toxin, tracheal cytotoxin and adenyl cyclase toxin is assumed provided that adequate validation of the process has been performed.Confirmation of the antigenic content of the detoxified bulk components is difficult to achieve by conventional binding assays based on monoclonal antibodies because of changes in accessibility of reactive sites post-toxoiding. However, single radial diffusion assay using polyclonal antisera permits estimation of pertussis toxoid (PT), filamentous haemagglutinin (FHA) and pertactin (P69). Dot blot immunoassay can be used for the fimbrial agglutinogens 2 and 3 (Fim 2 and 3) and potentially could also be used to check the composition of final filling lots for PT, FHA, P69 and Fim 2 and 3.Gel electrophoresis and immunoblotting can be applied to monitor purity of purified bulk components and the characteristics of these change after chemical detoxification. Electron microscopy provides a useful semi-quantitative supporting method for checking purity of bulk components. Physico-chemical examination, particularly CD and fluorescence spectroscopy, offer a means of monitoring the consistency of detoxified bulk components.No completely satisfactory method is available for monitoring potency. Immunogenicity assays may be useful for checking consistency but do not necessarily correlate with protection. At present, active protection against aerosol challenge offers the best prospect of a functional assay.  相似文献   

11.
Intravenous immunoglobulin (IVIG) manufactured from human plasma contains IgG as the primary ingredient, and is used for indications such as immunodeficiency syndrome. Available IVIGs in Taiwan are either manufactured from Taiwanese or North American plasma. The effectiveness of the national immunization program of Taiwan can be evaluated by analyzing and comparing IVIG antibody titers that are induced through the corresponding vaccines (tetanus, diphtheria, and pertussis, measles, rubella, hepatitis A, hepatitis B and varicella). Both enzyme-linked immunosorbent assay (ELISA) and the in vitro neutralization test demonstrated that all IVIGs provide adequate clinical protection against diphtheria and tetanus toxins. ELISA results further revealed that plasma of Taiwanese subjects contains higher levels of pertussis toxin and filamentous hemagglutinin antibodies, when compared to foreign IVIGs. This may be related to the later adoption of acellular pertussis vaccine in Taiwan. Antibodies titers against measles, rubella, hepatitis A, and varicella-zoster virus were otherwise low. Low titers of hepatitis B surface antigen antibodies are present in Taiwanese plasma IVIG, indicating immune memory decline or loss. In conclusion, our results show that Taiwanese IVIG contains varying titers of vaccine-induced antibodies, and serves as a guide for future amendments to Taiwan's immunization program.  相似文献   

12.
The aim of the first part of this study was to determine antibody level to pertussis toxin, filamentous hemagglutinin and endotoxin of B. pertussis in children without symptoms of respiratory tract infection. The serum samples obtained from 276 children (age range: 6 weeks-16 years) were examined using indirect hemagglutination and ELISA tests. Normal antibody levels to 3 B. pertussis antigens were determined for 95% of the serum samples as the upper cut-off levels depending on children age. Very high level of IgG antibodies to B.perussis antigens was observed in the control population. The lowest antibody level was found in IgA class to pertussis toxin and lipopolysaccharide. It was also established that the IgM level to 3 B. pertussis antigens was rising together with children age.  相似文献   

13.
Currently, an assay based on fatal sensitization of mice to histamine challenge is widely used for testing absence of residual pertussis toxin in acellular pertussis containing vaccines. For replacement of this lethal end-point assay, an alternative method based on body temperature measurement in mice has been presented, and in this study the specificity and detection limit of a dermal temperature-based assay were assessed. Test preparations containing pertussis toxin were prepared in aluminum-adjuvanted pertussis toxoid vaccine and injected intraperitoneally in histamine sensitive mice. Later the mice were challenged with histamine and the pertussis toxin-induced decrease in dermal temperature recorded. By comparison of mice treated with pertussis toxoid vaccine spiked with pertussis toxin with mice treated with pertussis toxoid vaccine alone, the assay gave a response that specifically could detect presence of pertussis toxin. The acellular pertussis containing vaccine did not interfere with the pertussis toxin-induced temperature response recorded. In tests for presence of pertussis toxin in the pertussis vaccine preparation, the detection limit of the assay was estimated to approximately 5 ng pertussis toxin per human dose of pertussis toxoid. The dermal temperature-based assay was found to be a valid method to be applied in routine quality control of vaccines.  相似文献   

14.
Acellular pertussis vaccines typically consist of antigens isolated from Bordetella pertussis, and pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two prominent components. One of the disadvantages of a multiple-component vaccine is the cost associated with the production of the individual components. In this study, we constructed an in-frame fusion protein consisting of PT fragments (179 amino acids of PT subunit S1 and 180 amino acids of PT subunit S3) and a 456-amino-acid type I domain of FHA. The fusion protein was expressed by the commensal oral bacterium Streptococcus gordonii. The fusion protein was secreted into the culture medium as an expected 155-kDa protein, which was recognized by a polyclonal anti-PT antibody, a monoclonal anti-S1 antibody, and a monoclonal anti-FHA antibody. The fusion protein was purified from the culture supernatant by affinity and gel permeation chromatography. The immunogenicity of the purified fusion protein was assessed in BALB/c mice by performing parenteral and mucosal immunization experiments. When given parenterally, the fusion protein elicited a very strong antibody titer against the FHA type I domain, a moderate titer against native FHA, and a weak titer against PT. When given mucosally, it elicited a systemic response and a mucosal response to FHA and PT. In Western blots, the immune sera recognized the S1, S3, and S2 subunits of PT. These data collectively indicate that fragments of the pertussis vaccine components can be expressed in a single fusion protein by S. gordonii and that the fusion protein is immunogenic. This multivalent fusion protein approach may be used in designing a new generation of acellular pertussis vaccines.  相似文献   

15.
Abstract Intra-nasal immunization of mice with purified Bordetella pertussis filamentous haemagglutinin (FHA) or a crude cell sonicate was shown to protect against subsequent B. pertussis aerosol challenge. Immunization with FHA was found to be the most effective and resulted in complete clearance of the bacterial infection from the lungs within 14 days. Serum IgG and lung IgA anti-FHA antibodies were detectable within 4 weeks of the first immunization and anamnestic responses were seen following secondary immunization and subsequent challenge with B. pertussis . Nasal administration of pertussis is a route which induces good systemic serum, as well as local secretory, antibody responses.  相似文献   

16.
Antitoxin in human pertussis immune globulins   总被引:1,自引:0,他引:1  
The level of antitoxin i.e. neutralizing antibodies to pertussis toxin, or lymphocytosis promoting factor, was determined in six pertussis immune globulin preparations from different manufactures. A comparison with antitoxin levels after natural pertussis disease in adults showed that pertussis immune globulins did not contain more antitoxin than convalescent phase sera, i.e. they had very low antitoxin content for specific immune globulins. Agglutinin and anti-FHA titres were relatively higher in immune globulins, probably reflecting a difference between the antibody response elicited by whole cell vaccines used for hyperimmunization in immune globulin production and by natural disease. The low antitoxin content of currently available pertussis immune globulin preparations could explain the inefficacy or conflicting results obtained with these products in prophylaxis and therapy of whooping cough.  相似文献   

17.
Acellular pertussis vaccines typically consist of antigens isolated from Bordetella pertussis, and pertussis toxin (PT) and filamentous hemagglutinin (FHA) are two prominent components. One of the disadvantages of a multiple-component vaccine is the cost associated with the production of the individual components. In this study, we constructed an in-frame fusion protein consisting of PT fragments (179 amino acids of PT subunit S1 and 180 amino acids of PT subunit S3) and a 456-amino-acid type I domain of FHA. The fusion protein was expressed by the commensal oral bacterium Streptococcus gordonii. The fusion protein was secreted into the culture medium as an expected 155-kDa protein, which was recognized by a polyclonal anti-PT antibody, a monoclonal anti-S1 antibody, and a monoclonal anti-FHA antibody. The fusion protein was purified from the culture supernatant by affinity and gel permeation chromatography. The immunogenicity of the purified fusion protein was assessed in BALB/c mice by performing parenteral and mucosal immunization experiments. When given parenterally, the fusion protein elicited a very strong antibody titer against the FHA type I domain, a moderate titer against native FHA, and a weak titer against PT. When given mucosally, it elicited a systemic response and a mucosal response to FHA and PT. In Western blots, the immune sera recognized the S1, S3, and S2 subunits of PT. These data collectively indicate that fragments of the pertussis vaccine components can be expressed in a single fusion protein by S. gordonii and that the fusion protein is immunogenic. This multivalent fusion protein approach may be used in designing a new generation of acellular pertussis vaccines.  相似文献   

18.
I Heron  F M Chen  J Fusco 《Biologicals》1999,27(2):91-96
NAVA's acellular pertussis vaccine is based on highly purified pertussis toxin (PT) inactivated with H(2)O(2). PT was analysed using advanced biochemical methodology including mass spectroscopy (LC/MS), yielding mass and peptide mapping information on the subunits. Pertactin, adenylate cyclase, and Fim 1, 2 were below detection levels and only trace amounts of filamentous haemagglutinin (FHA) have been identified as a minor impurity. The vaccine does not induce anti-FHA antibodies during the course of a 3-dose primary immunization series in infants. B and T cell epitopes are preserved to a higher extent after H(2)O(2)detoxification when compared with chemical inactivation with formaldehyde, thus providing new information explaining why vaccines employing formaldehyde detoxified PT may need additional pertussis components added to induce high levels of protection. Anti-PT antibodies generated by NAVA diphtheria, tetanus, and acellular pertussis vaccine (DTaP) showed a positive correlation with protection against WHO-defined pertussis. The safety profiles for these vaccines showed low reactogenicity with no serious adverse events due to the vaccines.  相似文献   

19.
The results of the weight gain test on mice have shown that acellular pertussis vaccine is less toxic than the pertussis component of adsorbed diphtheria-pertussis-tetanus (DPT) vaccine due to a lower content of endotoxin in the acellular vaccine; but the leukocytosis-promoting and histamine-sensitizing activities of JNIH-6 and adsorbed DPT vaccines are indicative of incomplete inactivation of Bordetella pertussis toxin. The content of incompletely inactivated B. pertussis toxin is practically the same in both preparations, constituting 1/100-1/200 of the calculated initial activity. For this reason, the use of the new pertussis vaccine also involves a risk of development of serious postvaccinal reactions and/or complications caused by this toxin. Search for the optimum method of inactivation of B. pertussis main toxin should be continued. As shown by the enzyme immunoassay, acellular pertussis vaccine used in the same immunizing dose as adsorbed DPT vaccine induces a more intensive immune response to hemagglutinin and B. pertussis toxin. This is due to higher residual toxicity of the corpuscular component of adsorbed DPT vaccine. Induction of antibodies to B. pertussis toxin has been shown to decrease in response to injection of acellular pertussis vaccine containing a certain residual amount of incompletely inactivated B. pertussis toxin.  相似文献   

20.
The test for the evaluation of the toxicity of different types of pertussis preparations as manifested by their in vitro influence on mouse thymic cells (T test) has been finally worked out. The use of the T test has made it possible to reveal the nonstandard character of the production lots of adsorbed diphtheria-pertussis-tetanus vaccines, both whole-cell vaccine and Japanese acellular vaccine. The degree of the in vitro damaging action of pertussis preparations on mouse thymic cells greatly depends on the residual content of Bordetella pertussis nontoxoidized toxin which, in contrast to B. pertussis lipopolysaccharide and filamentous hemagglutinin, produces pronounced cytotoxic action on mouse thymic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号