首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We have isolated a cDNA clone (pRcol 2) which is complementary to the 5'-terminal portion of the rat pro-alpha 1(II) chain mRNA. A synthetic oligonucleotide was used both as a primer for cDNA synthesis and as a probe for screening a cDNA library. The probe was a mixture of sixteen 14-mers deduced from an amino acid sequence present in the amino-terminal telopeptide of the rat cartilage alpha 1(II) chain. This primer was chosen so that the resulting cDNA would contain the sequence of the 5' end of the mRNA. The nucleotide sequences of the cDNA were determined and compared with that of three other interstitial procollagen chain mRNAs (pro-alpha 1(I), pro-alpha 2(I), and pro-alpha 1(III) chain mRNA). pRcol 2 contains a 521-base pair (bp) insert, including 153 bp of the 5' untranslated region plus 368 bp coding for the signal peptide, the amino-terminal propeptide, and a part of the telopeptide. The signal peptide of the type II collagen chain is composed of about 20 amino acids. There is little homology between the amino acid sequence of the signal peptide in the pro-alpha 1(II) chain and that of three other interstitial procollagen chains. The NH2-terminal propeptide is deduced to contain short nonhelical sequences at its amino and carboxyl ends and an internal helical collagenous domain comprising 25 repeats of Gly-X-Y with one interruption. There is a strong conservation of the amino acid sequence of the carboxyl-terminal part of the NH2-terminal propeptide in the pro-alpha 1(II), pro-alpha 1(I), and pro-alpha 2(I) chains. Type II collagen mRNA does not contain a sequence corresponding to a uniquely conserved nucleotide sequence around the translation initiation site which occurs in mRNA for other procollagen chains.  相似文献   

2.
A patient with Ehlers-Danlos syndrome Type VIIB was found to have an interstitial deletion of 18 amino acids in approximately half of the pro-alpha 2(I) chains of Type I procollagen. Analysis of pepsin-solubilized tissue and fibroblast collagen revealed an abnormal additional chain, alpha 2(I)', which migrated in sodium dodecyl sulfate-5% polyacrylamide gel electrophoresis between the normal alpha 1(I) and alpha 2(I) chains. The apparent ratio of normal alpha 1(I):mutant alpha 2(I)':normal alpha 2(I) was 4:1:1. Procollagen studies and enzyme digestion studies of native mutant collagen suggested defective removal of the amino propeptide. Sieve chromatography of CNBr peptides from purified alpha 2(I)' chains revealed the absence of the normal amino telopeptide fragment CB 1 and the appearance of a larger new peptide of approximately 60 residues (CB X). Compositional and sequencing studies of this peptide identified normal amino propeptide sequences. However, the most carboxyl-terminal tryptic peptide of CB X differed substantially in composition and sequence from the expected and was found to have an interstitial deletion of 18 amino acids corresponding to the N-telopeptide of the pro-alpha 2(I) chain. This deletion removes the normal sites of cleavage of the N-proteinase and also removes a critical cross-linking lysine residue. The 18 amino acids deleted correspond exactly to the residues encoded by exon 6 of the pro-alpha 2(I) collagen gene (COL 1 A2), and, therefore, the protein defect may be due to a genomic deletion, or alternatively, an RNA splicing defect.  相似文献   

3.
We have introduced two mutations into a full-length human pro-alpha 1(I) cDNA that delete 114 amino acids or the entire 139 amino acids of the N-propeptide domain. Wild-type and mutated versions of the cDNA were introduced into cultured Chinese hamster lung (CHL) cells, which do not produce endogenous type I collagen, and into Mov-13 mouse cells, which produce endogenous pro-alpha 2(I) chains but not pro-alpha 1(I) chains. As judged by resistance to proteases, neither mutation impaired intracellular triple helical assembly of human alpha 1(I) homotrimers in CHL cells, or of chimeric type I collagen comprised of human alpha 1(I) and mouse alpha 2(I) chains in Mov-13 cells. Thus, the N-propeptide is not necessary for intracellular assembly of the main helical collagen domain of type I collagen. In CHL cells the rate of secretion of the mutant homotrimers was greatly reduced as compared to wild type homotrimers, and by immunofluorescence and immunoelectron microscopy, the mutant chains were shown to be accumulated in large vesicular expansions of the rough endoplasmic reticulum. When such cells were retransfected with cDNA encoding wild-type human alpha 2(I) chains, mutant alpha 1(I) chains were not rescued and heterotrimers containing the mutant chains were also retained in the intracellular vesicles. By contrast, deletion of the N-propeptide did not affect secretion of heterotrimers containing mutant chains from Mov-13 cells. Thus, an intact N-propeptide appears necessary for efficient secretion of type I collagen from some but not all cell types.  相似文献   

4.
The low abundance fibrillar collagen type V is incorporated into and regulates the diameters of type I collagen fibrils. Bone morphogenetic protein-1 (BMP-1) is a metalloprotease that plays key roles in regulating formation of vertebrate extracellular matrix; it cleaves the C-propeptides of the major fibrillar procollagens I-III and processes precursors to produce the mature forms of the cross-linking enzyme prolysyl oxidase, the proteoglycan biglycan, and the basement membrane protein laminin 5. Here we have successfully produced recombinant pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, and we have used these to characterize biosynthetic processing of the most prevalent in vivo form of type V procollagen. In addition, we have compared the processing of endogenous pro-alpha1(V) chains by wild type mouse embryo fibroblasts and by fibroblasts derived from embryos doubly homozygous null for the Bmp-1 gene and for a gene encoding the closely related metalloprotease mammalian Tolloid-like 1. Together, results presented herein indicate that within pro-alpha1(V)(2)pro-alpha2(V) heterotrimers, pro-alpha1(V) N-propeptides and pro-alpha2(V) C-propeptides are processed by BMP-1-like enzymes, and pro-alpha1(V) C-propeptides are processed by furin-like proprotein convertases in vivo.  相似文献   

5.
The low abundance fibrillar collagen type V is widely distributed in tissues as an alpha1(V)(2)alpha2(V) heterotrimer that helps regulate the diameters of fibrils of the abundant collagen type I. Mutations in the alpha1(V) and alpha2(V) chain genes have been identified in some cases of classical Ehlers-Danlos syndrome (EDS), in which aberrant collagen fibrils are associated with connective tissue fragility, particularly in skin and joints. Type V collagen also exists as an alpha1(V)alpha2(V)alpha3(V) heterotrimer that has remained poorly characterized chiefly due to inability to obtain the complete primary structure or nucleic acid probes for the alpha3(V) chain or its biosynthetic precursor, pro-alpha3(V). Here we provide human and mouse full-length pro-alpha3(V) sequences. Pro-alpha3(V) is shown to be closely related to the alpha1(V) precursor, pro-alpha1(V), but with marked differences in N-propeptide sequences, and collagenous domain features that provide insights into the low melting temperature of alpha1(V)alpha2(V)alpha3(V) heterotrimers, lack of heparin binding by alpha3(V) chains and the possibility that alpha1(V)alpha2(V)alpha3(V) heterotrimers are incorporated into heterotypic fibrils. In situ hybridization of mouse embryos detects alpha3(V) expression primarily in the epimysial sheaths of developing muscles and within nascent ligaments adjacent to forming bones and in joints. This distribution, and the association of alpha1(V), alpha2(V), and alpha3(V) chains in heterotrimers, suggests the human alpha3(V) gene COL5A3 as a candidate locus for at least some cases of classical EDS in which the alpha1(V) and alpha2(V) genes have been excluded, and for at least some cases of the hypermobility type of EDS, a condition marked by gross joint laxity and chronic musculoskeletal pain. COL5A3 is mapped to 19p13.2 near a polymorphic marker that should be useful in analyzing linkage with EDS and other disease phenotypes.  相似文献   

6.
We have isolated several overlapping cDNA clones encoding alpha 1(XI) collagen chains from human and rat cDNA libraries. Together the human cDNAs code for 335 uninterrupted Gly-X-Y triplets, and a 264-amino acid C-propeptide, while the rat cDNAs cover the entire C-propeptide and about a third of the triple-helical domain. Comparison of the human and rodent nucleotide sequences showed a 95% sequence similarity. The identification of the clones as alpha 1(XI) cDNAs was based on the complete identity between the amino acid sequences of three human alpha 1(XI) cyanogen bromide peptides and the cDNA-derived sequence. Examination of and the cDNA-derived amino acid sequence showed a variety of structural features characteristic of fibrillar-forming collagens. In addition, nucleotide sequence analysis of a selected portion of the corresponding human gene revealed the characteristic 54-base pair exon motif. We conclude therefore that pro-alpha 1 (XI) collagen belongs to the group of fibrillar collagen genes. We also suggest that the expression of this gene is not restricted to cartilage, as previously thought, since the cDNA libraries from which the clones were isolated, originated from both cartilagenous and noncartilaginous tissues.  相似文献   

7.
A full length cDNA encoding human pro-alpha 2(V) collagen was constructed. Partial sequencing of the cDNA and primer extension analysis of mRNA from fibroblasts found that pro-alpha 2(V) mRNA differs from the mRNAs of other fibrillar collagens in the increased length of its 5'-untranslated region. The pro-alpha 2(V) cDNA was placed downstream of the human cytomegalovirus immediate early promoter/regulatory sequences for expression studies in cultured Chinese hamster lung cells. These cells have been shown previously to synthesize large quantities of pro-alpha 1(V) homotrimers as their only collagenous product. Transfection resulted in a number of clonal cell lines that express human alpha 2(V) RNA at levels comparable to, and in some cases greater than, levels found in normal human skin fibroblasts. Pro-alpha 2(V) chains produced in the majority of clonal lines were of sufficient quantity to complex all available endogenous pro-alpha 1(V) chains. Chimeric heterotrimers, composed of hamster alpha 1(V) and human alpha 2(V) chains in a 2:1 ratio, were stable to pepsin digestion and were found predominantly associated with the cell layer. Surprisingly, pro-alpha 2(V) chains, in excess to pro-alpha 1(V) chains, were found in the extracellular matrix and, in much greater abundance, in media. These chains were pepsin sensitive, indicating that pro-alpha 2(V) chains can be secreted as nonstable homotrimers or as free chains.  相似文献   

8.
Complete primary structure of human collagen alpha 1 (V) chain   总被引:4,自引:0,他引:4  
Several cDNA clones, encoding prepropeptide of human collagen alpha 1(V) chain, have been isolated. The prepropeptide (1838 amino acids length) of the alpha 1(V) chain was composed of a putative signal peptide, a large NH2-terminal noncollagenous region, a main collagenous region, and a COOH-terminal noncollagenous region. The signal peptide contained many leucine residues. The NH2-terminal noncollagenous region was much larger than those of the other collagens and had a region homologous to the COOH-terminal domain of laminin A chain, but it did not contain a cysteine-rich region that was maintained in the region of the other collagens. This region also contained probable tyrosine sulfation sites, and short collagenous sequences that were interrupted by three noncollagenous segments. The main collagenous region of the alpha 1(V) chain consisted of 338 repeats of Gly-X-Y-triplet. This region had a high degree (82%) of homology with the amino acids of the collagen alpha 1(XI) chain. The COOH-terminal noncollagenous region resembled that of the alpha 1(XI) chain, too, and 8 residues of cysteine that were important for the formation of the triple helix structure of collagens were observed. These results suggest that the alpha 1(V) chain belongs to the fibrillar collagen relative to the alpha 1(XI) chain, but codon usage of the alpha 1(V) cDNA was clearly different from those of the other fibrillar collagens including the alpha 1(XI), while it was similar to type IV collagen. This result supposes a different evolution of the alpha 1(V) gene from those of the other fibrillar collagens.  相似文献   

9.
The cause of the Ehlers-Danlos syndrome Type VII (EDS VII) is considered to be defective removal of the amino-terminal propeptide (N-propeptide) of Type I procollagen due to deficiency of procollagen N-proteinase, the enzyme responsible for the normal proteolytic excision of this precursor-specific domain. Molecules retaining the N-propeptide (pN-collagen molecules) are thought to cause defective fibrillogenesis and cross-linking which eventuate in dramatic joint laxity and joint dislocations, the clinical hallmark of this variety of EDS. Recent studies demonstrate that some EDS VII patients harbor small deletions of either the pro-alpha 1(I) or pro-alpha 2(I) chain of Type I procollagen. We have found an 18-amino acid deletion (due to exon outsplicing) in a mutant pro-alpha 2(I) chain from such a patient. The deleted peptide is the junctional segment (N-telopeptide) linking the alpha 2(I) N-propeptide and major triple helical domains; loss of this short segment results in union of these latter domains and produces a shortened pN alpha 2(I) chain. Directly extracted tissue collagen and pepsin-digested fibroblast collagen contain this mutant pN alpha 2(I) chain and normal alpha 1(I) chains, but not pN alpha 1(I) chains, indicating that the relatively larger alpha 1(I) N-propeptide is excised from the related alpha 1(I) chains. The fate of this alpha 1(I) N-propeptide was unclear and therefore whether or not the intact N-propeptide was, in fact, retained in native mutant collagen was also unclear. In this paper, we describe morphologic, chemical, and immunochemical studies which indicate that the alpha 1(I) N-propeptide is retained in noncovalent association with the mutant pN alpha 2(I) chain in native mutant collagen molecules both in vivo and in vitro. In both instances, the alpha 1(I) N-propeptides are proteolytically cleaved from the related alpha 1(I) chains. These data suggest that retention of a partially cleaved, but essentially intact N-propeptide in mutant collagen may play a role in the pathogenesis of this disease.  相似文献   

10.
11.
Type V collagen is a quantitatively minor fibrillar collagen comprised of different chain compositions in different tissues. The most widely distributed form, an alpha1(V)2alpha2(V) heterotrimer, regulates the physical properties of type I/V heterotypic collagen fibrils via partially processed NH2-terminal globular sequences. A less characterized alpha1(V)alpha2(V)alpha3(V) heterotrimer has a much more limited distribution of expression and unknown function(s). We characterized the biosynthetic processing of pro-alpha1(V)2pro-alpha2(V) procollagen previously and showed it to differ in important ways from biosynthetic processing of the major fibrillar procollagens I-III. Here we have successfully produced recombinant pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers. We use these, and mouse embryo fibroblasts doubly homozygous null for the Bmp1 gene, which encodes the metalloproteinase bone morphogenetic protein-1 (BMP-1), and for a gene encoding the closely related metalloproteinase mammalian Tolloid-like 1, to characterize biosynthetic processing of pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers, thus completing characterization of type V collagen biosynthetic processing. Whereas pro-alpha1(V) and pro-alpha2(V) processing in pro-alpha1(V)pro-alpha2(V)pro-alpha3(V) heterotrimers is similar to that which occurs in pro-alpha1(V)2pro-alpha2(V) heterotrimers, the processing of pro-alpha3(V) by BMP-1 occurs at an unexpected site within NH2-terminal globular sequences. We also demonstrate that, despite similarities in NH2-terminal domain structures, pro-alpha2(V) NH2-terminal globular sequences are not cleaved by ADAMTS-2, the metalloproteinase that cleaves the N-propeptides of the major fibrillar procollagen chains.  相似文献   

12.
F Fuller  H Boedtker 《Biochemistry》1981,20(4):996-1006
Three pro-alpha 1 collagen cDNA clones, pCg1, pCg26, and pCg54, and two pro-alpha 2 collagen cDNA clones, pCg 13 and pCg45, were subjected to extensive DNA sequence determination. The combined sequences specified the amino acid sequences for chicken pro-alpha 1 and pro-alpha 2 type I collagens starting at residue 814 in the collagen triple-helical region and continuing to the procollagen C-termini as determined by the first in-phase termination codon. Thus, the sequences of 272 pro-alpha 1 C-terminal, 260 pro-alpha 2 C-terminal, 201 pro-alpha 1 helical, and 201 pro-alpha 2 helical amino acids were established. In addition, the sequences of several hundred nucleotides corresponding to noncoding regions of both procollagen mRNAs were determined. In total, 1589 pro-alpha 1 base pairs and 1691 pro-alpha 2 base pairs were sequenced, corresponding to approximately one-third of the total length of each mRNA. Both procollagen mRNA sequences have a high G+C content. The pro-alpha 1 mRNA is 75% G+C in the helical coding region sequenced and 61% G&C in the C-terminal coding region while the pro-alpha 2 mRNA is 60% and 48% G+C, respectively, in these regions. The dinucleotide sequence pCG occurs at a higher frequence in both sequences than is normally found in vertebrate DNAs and is approximately 5 times more frequent in the pro-alpha 1 sequence than in the pro-alpha 2 sequence. Nucleotide homology in the helical coding regions is very limited given that these sequences code for the repeating Gly-X-Y tripeptide in a region where X and Y residues are 50% conserved. These differences are clearly reflected in the preferred codon usages of the two mRNAs.  相似文献   

13.
Type V collagen was prepared from human amnionic/chorionic membranes and separated into alpha 1(V) and alpha 2(V) polypeptide chains. The alpha 1(V) chain was digested with cyanogen bromide and nine peptides were obtained and purified. Three of the peptides, alpha 1(V)CB1, CB4, and CB7 having molecular weights of 5000, 8000, and 6000, respectively, were further analyzed by amino acid sequence analysis and thermolytic or tryptic digestions. CB1 contained 54 amino acids and identification of its complete sequence was aided by thermolysin digestion and isolation of two peptides, Th1 and Th2. CB4 contained 81 amino acids and sequence analysis of intact CB4 and five tryptic peptides provided us with its complete amino acid sequence. The peptide CB7 contained 67 amino acids and was cleaved into four tryptic peptides that were used for complete sequence analysis. The above results represent the first available covalent structure information on the alpha 1(V) collagen chain. These data enabled us to establish the location of these peptides within the helical structure of other collagen chains. CB4 was homologous to residues 66-145 in the collagen chain while CB1 represented residues 146-200 and CB7 was homologous with residues 201-269. This alignment was facilitated by identification of a helical collagen crossing site consisting of Hyl-Gly-His-Arg located at positions 87-90 in all collagen chains of this size thus far identified. Seventy-one percent homology (excluding Gly residues) was found between amino acids in this region of the alpha 1(XI) and of alpha 1(V) collagen chains while only 21 and 19% identity was calculated for the same region of alpha 2(V) and alpha 1(I) collagen chains, respectively.  相似文献   

14.
A full-length cDNA of the Type I procollagen alpha1 [pro-alpha1(I)] chain (4388 bp), coding for 1463 amino acid residues in the total length, was determined by RACE PCR using a cDNA library constructed from 4-week embryo of the skate Raja kenojei. The helical region of the skate pro-alpha1(I) chain consisted of 1014 amino acid residues - the same as other fibrillar collagen alpha chains from higher vertebrates. Comparison on denaturation temperatures of Type I collagens from the skate, rainbow trout (Oncorhynchus mykiss) and rat (Rattus norvegicus) revealed that the number of Gly-Pro-Pro and Gly-Gly in the alpha1(I) chains could be directly related to the thermal stability of the helix. The expression property of the skate pro-alpha1(I) chain mRNA and phylogenetic analysis with other vertebrate pro-alpha1(I) chains suggested that skate pro-alpha1(I) chain could be a precursor form of the skate Type I collagen alpha1 chain. The present study is the first evidence for the primary structure of full-length pro-alpha1(I) chain in an elasmobranch.  相似文献   

15.
Synthesis of type I procollagen was examined in skin fibroblasts from a proband with a lethal variant of osteogenesis imperfecta. The fibroblasts synthesized shortened pro-alpha 2(I) chains and these shortened chains accounted for all the pro-alpha 2(I) chains synthesized by the cells. In addition, there was a decrease in the relative rate of synthesis of pro-alpha 2(I) chains. Fragmentation of the shortened pro-alpha 2(I) chains with vertebrate collagenase and cyanogen bromide demonstrated that the shortening was in alpha 2(I)-CB3,5A, a fragment from about the middle of the chain containing amino acid residues 361 to 775. Based on the relative mobility in electrophoretic gels, the shortening was about 20 amino acid residues. The decreased synthesis of pro-alpha 2(I) chains was demonstrated by an increase in the ratio for the rates of synthesis of pro-alpha 1(I):pro-alpha 2(I) chains. It was associated with an increase in the ratio of mRNAs for pro-alpha 1(I):pro-alpha 2(I) in the cells. Fibroblasts from the father also demonstrated a decreased synthesis of pro-alpha 2(I) chains as reflected by an increase in the ratio of newly synthesized pro-alpha 1(I):pro-alpha 2(I) chains. No shortened pro-alpha 2(I) chains were seen in fibroblasts from either the father or the mother. The observations suggested that the proband inherited a nonfunctioning pro-alpha 2(I) gene from her father and that the gene for the shortened pro-alpha 2(I) chain probably arose from a sporadic mutation.  相似文献   

16.
A structural defect in the alpha 2(I) chain of type I collagen was characterized in a new case of the Ehlers-Danlos syndrome type VII. The patient's skin, fascia, and bone collagens all showed an abnormal additional chain, pN-alpha 2(I)s, running slower than the alpha 2(I) chain on electrophoresis. The extension was shown to be on the amino-terminal fragment of pN-alpha (I)s by cleavage with human collagenase, but pepsin was unable to convert pN-alpha 2(I)s to alpha 2(I). Skin collagen was 4-fold more extractable and contained fewer beta-dimers and a lower concentration of cross-linking amino acids than control skin collagen. Electron micrographs of both dermis and bone showed markedly irregular ragged outlines of the collagen fibrils in cross-section, although the patient had no clinical signs of bone disease. Procollagen secreted by her skin fibroblasts in culture showed equal amounts of the normal and abnormal alpha 2(I) chains on pepsin digestion. Before pepsin, the pN-alpha 2(I) component ran as a doublet on electrophoresis; pepsin removed only the normal slower chain. The suspected deletion in pN-alpha 2(I)s was traced by CNBr peptide analysis to the N-propeptide fragment, which behaved on electrophoresis about 15-20 residues smaller than that from the normal pN-alpha 2(I) chain. The simplest genetic explanation is a spontaneous heterozygote in which one normal and one abnormal allele for the pro-alpha 2(I) gene are expressed, the protein defect being a deletion of the junction domain that spans the N-propeptidase cleavage site and the N-telopeptide cross-linking sequence.  相似文献   

17.
We have determined the nucleotide sequence of a cDNA clone encoding the amino-terminal portion of human alpha 2(V) procollagen and found that the structure of the 186-residue amino-terminal propeptide closely resembles those of the fibril-forming procollagens. Juxtaposed to a 26-residue leader peptide, pro-alpha 2(V) exhibits a characteristic cysteine-rich globular region followed by 24 Gly-X-Y repeats which are interrupted by two short non-collagenous sequences. Upon closer examination, each of these two sequences was noted to display structural motifs characteristic of either pro-alpha 1(I) and pro-alpha 1(III) collagens or pro-alpha 1(II) collagen, respectively. Finally, within the amino-terminal telopeptide, a putative amino-terminal proteinase cleavage site, Ala-Gln, was identified. This latter finding strongly suggests that the alpha 2(V) amino-terminal propeptide can be potentially processed and thus leaves unresolved the issue pertaining to the nature of the collagenase-resistant sequence that is retained by mature type V collagen molecules.  相似文献   

18.
Synthesis of procollagen was examined in skin fibroblasts from a patient with a moderately severe autosomal dominant form of osteogenesis imperfecta. Proteolytic removal of the propeptide regions of newly synthesized procollagen, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, revealed the presence of type I collagen in which two alpha 1(I) chains were linked through interchain disulfide bonds. Fragmentation of the disulfide-bonded alpha 1(I) dimers with vertebrate collagenase and cyanogen bromide demonstrated the presence of a cysteine residue in alpha 1(I)CB8, a fragment containing amino acid residues 124-402 of the alpha 1(I) collagen chain. Cysteine residues are not normally found in the triple-helical domain of type I collagen chains. The heterozygous nature of the molecular defect resulted in the formation of three kinds of type I trimers: a normal type with normal pro-alpha(I) chains, a type I trimer with one mutant pro-alpha 1(I) chain and two normal chains, and a type I trimer containing two mutant pro-alpha 1(I) chains and one normal pro-alpha 2(I) chain. The presence of one or two mutant pro-alpha 1(I) chains in trimers of type I procollagen was found to reduce the thermal stability of the protein by 2.5 and 1 degree C, respectively. In addition to post-translational overmodification, procollagen containing one mutant pro-alpha 1(I) chain was also cleared more slowly from cultured fibroblasts. The most likely explanation for these disruptive changes in the physical stability and secretion of the mutant procollagen is that a cysteine residue is substituted for a glycine in half of the pro-alpha 1(I) chains synthesized by the patient's fibroblasts.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号