首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The changes of the intracellular pH (pHi) of cultured bovine aortic endothelial cells were fluorometrically monitored using 2',7'-bis(carboxyethyl)carboxyfluorescein (BCECF). A biphasic pHi change was observed by addition of ATP: an initial acidification followed by an alkalinization of about 0.2 pH unit above the resting level of pHi 7.23. The alkalinization was dependent on [Na+]o and [H+]o, and was inhibited by 5-(N,N-hexamethylene)amiloride, indicating that the alkalinization is mediated by the Na+/H+ exchanger. The 50% effective concentration of ATP was about 1.4 microM. ADP similarly induced pHi changes, whereas AMP and adenosine were inactive. The pHi changes induced by ATP were dependent on the extracellular Ca2+, and the addition of calcium ionophore A23187 induced similar pHi changes. The results indicate that ATP activates the Na+/H+ exchanger in cultured bovine aortic endothelial cells and the activation is mediated by the P2-purinergic receptor and is dependent on the extracellular Ca2+.  相似文献   

2.
Intracellular free Ca2+ [( Ca2+]i) and pH (pHi) were measured simultaneously by dual wavelength excitation in thrombin-stimulated human platelets double-labeled with the fluorescent probes fura2 and 2',7'-bis(carboxyethyl)-5,6-carboxyfluorescein to determine the relationship between changes in [Ca2+]i and pHi, respectively. At 37 degrees C, thrombin (0.5 or 0.1 units/ml) increased [Ca2+]i with no detectable lag period to maximum levels within 13 s followed by a slow return to resting levels. There was a transient decrease in pHi within 9 s that was immediately followed by an alkalinization response, attributable to activation of Na+/H+ exchange, that raised pHi above resting levels within 22 s. At 10-15 degrees C, thrombin-induced changes in [Ca2+]i and pHi were delayed and therefore better resolved, although no differences in the magnitude of changes in [Ca2+]i and pHi were observed. However, the increase in [Ca2+]i had peaked or was declining before the alkalinization response was detected, suggesting that Ca2+ mobilization occurs before activation of Na+/H+ exchange. In platelets preincubated with 5-(N-ethyl-N-isopropyl)amiloride or gel-filtered in Na+-free buffer (Na+ replaced with N-methyl-D-glutamine) to inhibit Na+/H+ exchange, thrombin stimulation caused a rapid, sustained decrease in pHi. Under these conditions there was complete inhibition of the alkalinization response, whereas Ca2+ mobilization was only partially inhibited. Nigericin (a K+/H+ ionophore) caused a rapid acidification of more than 0.3 pH unit that was sustained in the presence of 5-(N-ethyl-N-isopropyl)amiloride. Subsequent stimulation with thrombin resulted in slight inhibition of Ca2+ mobilization. These data show that, in human platelets stimulated with high or low concentrations of thrombin, Ca2+ mobilization can occur without a functional Na+/H+ exchanger and in an acidified cytoplasm. We conclude that Ca2+ mobilization does not require activation of Na+/H+ exchange or preliminary cytoplasmic alkalinization.  相似文献   

3.
The calcium dependence of growth factor-induced cytoplasmic alkalinization was determined in serum-deprived human fibroblasts (WS-1 cells). Intracellular pH (pHi) and intracellular calcium (Ca2+i) were measured using the fluorescent dyes 2',7'-bis-(2-carboxyethyl)-5(6)-carboxyfluorescein and fura2, respectively. Thrombin (10 nM) induced an alkalinization (0.18 +/- 0.01 pH units, n = 23) that was Na+-dependent and amiloride-sensitive, suggesting that the alkalinization was mediated by the Na+/H+ exchanger. Thrombin treatment caused a transient increase in Ca2+i (325 +/- 39 nM, n = 12) that preceded the observed increase in pHi. The increases in Ca2+i and pHi were dependent on the concentration of thrombin. The thrombin-induced increase in Ca2+i occurred in the absence of external calcium indicating that thrombin released calcium from internal stores. Inhibition of the thrombin-induced increase in Ca2+i with 8-diethylaminooctyl 3,4,5-trimethoxybenzoate hydrochloride or bis-(o-aminophenoxy)ethane-N,N,N',N'- tetraacetic acid also inhibited the thrombin-stimulated increase in pHi. The calcium ionophore ionomycin was used to increase Ca2+i independent of growth factor stimulation. When Ca2+i was elevated with ionomycin, a concomitant increase in pHi was observed. The increase in pHi due to ionomycin was dependent on Na+ and sensitive to amiloride. The removal of external Ca2+i inhibited the ionomycin-induced elevation of both Ca2+i and pHi. The ionomycin-induced increases in Ca2+i and pHi were not inhibited by 8-diethylaminooctyl 3,4,5-trimethoxy-benzoate hydrochloride. The results suggest that thrombin treatment can activate the Na+/H+ exchanger, and this activation is mediated by an increase in Ca2+i.  相似文献   

4.
1. Neurons with a receptor responded to FMRFamide (Phe-Met-Arg-Phe-NH2) were identified in the ganglion of Aplysia kurodai. Ionic mechanism and channel gating system of the FMRFamide-induced responses were investigated by current clamp and voltage clamp methods. 2. The reversal potential of FMRFamide-induced response exactly coincided with the equilibrium potential for K+. This proved that the response was produced by a specific increase in membrane permeability toward K+, exclusively. 3. The FMRFamide-induced response was not affected by the inhibitors for Ca2(+)-activated K(+)-current, i.e., TEA, apamin, and EGTA. This excluded a possibility that FMRFamide-activated K(+)-channel is a Ca2(+)-activated K(+)-channel. 4. Intracellular injection of pertussis-toxin (PTX) caused no change in either resting potential or conductance, but it irreversibly blocked the FMRFamide-induced outward current within 30 min. Similarly applied cholera toxin (CTX) showed no effect on the FMRF-amide response. 5. Intracellular application of guanosine 5'-0-(2-thiodiphosphate) (GDP beta S) caused no effect on either resting potential or conductance, but it blocked the FMRFamide-induced K(+)-current within 3 min. 6. Intracellular application of guanosine 5'-0-(3-thiotriphosphate) (GTP gamma S) alone induced a slowly developing, irreversible outward current associated with an increase in membrane conductance. However, repetitive applications of FMRFamide immediately after the start of GTP gamma S application markedly facilitated the effect of GTP gamma S on the resting membrane. 7. Intracellular application of either adenylate cyclase inhibitor (3'-deoxyadenosine) or A-kinase inhibitor (H-8) did not affect the FMRFamide-induced response. 8. It was concluded that the FMRFamide-induced K(+)-current is mediated by PTX-sensitive GTP-binding protein Gi, Go or Gk. It was also suggested that the FMRFamide-induced response is produced independently of the changes in intracellular Ca2+ or cyclic AMP.  相似文献   

5.
We have studied the effects of thrombin (0.1 U/ml) on intracellular Ca2+ ([Ca2+]i) and pH (pHi) in human platelets loaded with fluorescent indicators. Thrombin produced a transient decrease of pHi which reached its maximum within 15-25 seconds (s) and was followed by a sustained alkalinization which brought pHi above the resting value. [Ca2+]i increased transiently peaking at 5-10 s. The late alkalinization induced by thrombin was antagonized by ethylisopropylamiloride, an inhibitor of Na+-H+ exchange, and by sphingosine, an inhibitor of protein kinase C, with little effect on the [Ca2+]i transient. The early acidification was not inhibited by these treatments. We conclude tha the thrombin-induced changes of [Ca2+]i and pHi are mediated by different mechanisms. The late alkalinization is due to activation of Na+/H+ exchange mediated by protein kinase C and, contrarily to previous proposals (Siffert, W. and Akkerman, J.W.N. (1987) Nature 325, 456-458), it is not necessary for calcium mobilization from intracellular stores.  相似文献   

6.
The intracellular pH (pHi) changes resulting from chemotactic factor-induced activation of Na+/H+ exchange in isolated human neutrophils were characterized. Intracellular pH was measured from the equilibrium distribution of [14C]-5,5-dimethyloxazolidine-2,4-dione and from the fluorescence of 6-carboxyfluorescein. Exposure of cells to 0.1 microM N-formyl-methionyl-leucyl-phenylalanine (FMLP) in 140 mM Na+ medium at extracellular pH (pHo) 7.40 led to a rise in pHi along an exponential time course (rate coefficient approximately 0.55 min-1). By 10 min, a new steady-state pHi was reached (7.75-7.80) that was 0.55-0.60 units higher than the resting pHi of control cells (7.20-7.25). The initial rate of H+ efflux from the cells (approximately 15 meq/liter X min), calculated from the intrinsic intracellular buffering power of approximately 50 mM/pH, was comparable to the rate of net Na+ influx (approximately 17 meq/liter X min), an observation consistent with a 1:1 stoichiometry for Na+/H+ exchange. This counter-transport could be inhibited by amiloride (apparent Ki approximately 75 microM). When either the external ([Na+]o) or internal Na ([Na+]i) concentrations, pHo, or pHi were varied independently, the new steady-state [Na+]i and pHi values in FMLP-stimulated cells were those corresponding to a chemical equilibrium distribution of Na+ and H+ across the cell membrane. By analogy to other activated cells, these results indicate that an alkalinization of pHi in human neutrophils is mediated by a chemotactic factor-induced exchange of internal H+ for external Na+.  相似文献   

7.
Intracellular pH (pHi) was measured in the insulin-secreting HIT-T15 cell line using the pH-sensitive fluorescent dye, 2',7'-bis(carboxyethyl)-5'(6')-carboxyfluorescein (BCECF). It was observed that the addition of a weak acid (e.g., acetate or propionate) caused a rapid decrease in pHi, followed by a slower recovery to the resting pH value. Conversely the addition of N4Cl caused an increase in pHi followed by recovery. The addition of amiloride caused a fall in pHi; however, in this case no recovery to basal pH levels was observed. Subsequent addition of a weak acid caused a further fall in pHi with no recovery. The addition of glucose caused a transient acidification followed by alkalinization. When glucose was added to cells which had been pretreated with amiloride, the initial acidification was not followed by recovery or alkalinization. Addition of glyceraldehyde, alpha-ketoisocaproate, lactate or pyruvate to HIT cells also resulted in intracellular acidification followed by recovery. Similarly, depolarisation of HIT cells by treatment with high K+ or with Ba2+ was associated with a pronounced fall in pHi, followed by a gradual recovery. Insulin secretion from HIT cells was stimulated by glucose, glyceraldehyde, alpha-ketoisocaproate, lactate, pyruvate and KCl, whilst amiloride and weak acids exerted only modest effects in the absence of glucose, but amiloride in particular markedly potentiated glucose-induced insulin release. Thus, HIT cells appear to have an amiloride-sensitive mechanism for the extrusion of protons, probably Na+-H+ exchange. Whilst intracellular acidification appears to potentiate secretory responses to nutrient stimuli, it seems unlikely that the activation of HIT cells by these nutrients occurs as a result of intracellular acidification. The mechanisms by which various nutrient and non-nutrient stimuli might exert distinct effects on pHi are discussed.  相似文献   

8.
Intracellular pH (pHi) of human platelets was measured with the fluorescent dye 2',7'-bis(carboxyethyl)5,6-carboxyfluorescein under various conditions. Stimulation by thrombin at 23 degrees C caused a biphasic change in pHi (initial pHi 7.09); a rapid fall of 0.01-0.04 units (correlated with the rise of [Ca2+]i measured with quin2) followed after 10-15 s by a sustained rise of 0.1-0.15 units pHi. The fall of pHi and [Ca2+]i mobilization was reduced by early (5 s) addition of hirudin, but the later elevated pHi was not reversed by hirudin added after 30 s, although this strips thrombin from receptors and rapidly returns [Ca2+]i to basal levels. In Na+-free medium, or in presence of the Na+/H+ antiport inhibitors, 5-(N,N-dimethyl)amiloride (DMA) or 5-(N-ethyl-N-isopropyl)amiloride (EIPA), thrombin caused a greater fall of pHi (0.22-0.26 units) that was sustained. DMA or EIPA could also reverse the alkalinization response to thrombin. Ca2+ ionophores (ionomycin, A23187) decreased platelet pHi by 0.02-0.15 units, but without an increase of pHi comparable to that following thrombin; DMA and EIPA enhanced the fall of pHi (0.14-0.33 units). Cytoplasmic acidification produced by nigericin (K+/H+ ionophore) was followed by return towards normal that was abolished by Na+/H+ antiport inhibitors. The phorbol diester phorbol 12-myristate 13-acetate had little effect on resting pHi but increased the rate of recovery 2-3-fold after cytoplasmic acidification by nigericin, ionomycin, or sodium propionate. These results indicate that elevation of [Ca2+]i by thrombin enhances H+ production, but the subsequent alkalinization is independent of receptor occupancy or elevated [Ca2+]i and stimulation of the Na+/H+ antiporter by thrombin probably involves some mechanism apart from regulation by H+ and protein kinase C.  相似文献   

9.
Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.  相似文献   

10.
We determined the effects of intracellular respiratory and metabolic acid or alkali loads, at constant or variable external pH, on the apical membrane Na+-specific conductance (ga) and basolateral membrane conductance (gb), principally due to K+, in the short-circuited isolated frog skin epithelium. Conductances were determined from the current-voltage relations of the amiloride-inhibitable cellular current pathway, and intracellular pH (pHi) was measured using double barreled H+-sensitive microelectrodes. The experimental set up permitted simultaneous recording of conductances and pHi from the same epithelial cell. We found that due to the asymmetric permeability properties of apical and basolateral cell membranes to HCO3- and NH+4, the direction of the variations in pHi was dependent on the side of addition of the acid or alkali load. Specifically, changing from control Ringer, gassed in air without HCO3- (pHo = 7.4), to one containing 25 mmol/liter HCO3- that was gassed in 5% CO2 (pHo = 7.4) on the apical side caused a rapid intracellular acidification whereas when this maneuver was performed from the basolateral side of the epithelium a slight intracellular alkalinization was produced. The addition of 15 mmol/liter NH4Cl to control Ringer on the apical side caused an immediate intracellular alkalinization that lasted up to 30 min; subsequent removal of NH4Cl resulted in a reversible fall in pHi, whereas basolateral addition of NH4Cl produced a prolonged intracellular acidosis. Using these maneouvres to change pHi we found that the transepithelial Na+ transport rate (Isc), and ga, and gb were increased by an intracellular alkalinization and decreased by an acid shift in pHi. These variations in Isc, ga, and gb with changing pHi occurred simultaneously, instantaneously, and in parallel even upon small perturbations of pHi (range, 7.1-7.4). Taken together these results indicate that pHi may act as an intrinsic regulator of epithelial ion transport.  相似文献   

11.
Measurements of cytosolic pH (pHi) 36Cl fluxes and free cytosolic Ca2+ concentration ([Ca2+]i) were performed in the clonal osteosarcoma cell line UMR-106 to characterize the kinetic properties of Cl-/HCO3- (OH-) exchange and its regulation by pHi and [Ca2+]i. Suspending cells in Cl(-)-free medium resulted in rapid cytosolic alkalinization from pHi 7.05 to approximately 7.42. Subsequently, the cytosol acidified to pHi 7.31. Extracellular HCO3- increased the rate and extent of cytosolic alkalinization and prevented the secondary acidification. Suspending alkalinized and Cl(-)-depleted cells in Cl(-)-containing solutions resulted in cytosolic acidification. All these pHi changes were inhibited by 4',4',-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) and H2DIDS, and were not affected by manipulation of the membrane potential. The pattern of extracellular Cl- dependency of the exchange process suggests that Cl- ions interact with a single saturable external site and HCO3- (OH-) complete with Cl- for binding to this site. The dependencies of both net anion exchange and Cl- self-exchange fluxes on pHi did not follow simple saturation kinetics. These findings suggest that the anion exchanger is regulated by intracellular HCO3- (OH-). A rise in [Ca2+]i, whether induced by stimulation of protein kinase C-activated Ca2+ channels, Ca2+ ionophore, or depolarization of the plasma membrane, resulted in cytosolic acidification with subsequent recovery from acidification. The Ca2+-activated acidification required the presence of Cl- in the medium, could be blocked by DIDS, and H2DIDS and was independent of the membrane potential. The subsequent recovery from acidification was absolutely dependent on the initial acidification, required the presence of Na+ in the medium, and was blocked by amiloride. Activation of protein kinase C without a change in [Ca2+]i did not alter pHi. Likewise, in H2DIDS-treated cells and in the absence of Cl-, an increase in [Ca2+]i did not activate the Na+/H+ exchanger in UMR-106 cells. These findings indicate that an increase in [Ca2+]i was sufficient to activate the Cl-/HCO3- exchanger, which results in the acidification of the cytosol. The accumulated H+ in the cytosol activated the Na+/H+ exchanger. Kinetic analysis of the anion exchange showed that at saturating intracellular OH-, a [Ca2+]i increase did not modify the properties of the extracellular site. A rise in [Ca2+]i increased the apparent affinity for intracellular OH- (or HCO3-) of both net anion and Cl- self exchange. These results indicate that [Ca2+]i modifies the interaction of intracellular OH- (or HCO3-) with the proposed regulatory site of the anion exchanger in UMR-106 cells.  相似文献   

12.
The acrosome reaction (AR) is an exocytotic event that allows sperm to recognize and fuse with the egg. In the sea urchin sperm this reaction is triggered by the outer investment of the egg, the jelly, which induces ionic movements leading to increases in intracellular Ca2+ ([Ca2+]i) and intracellular pH (pHi), a K(+)-dependent transient hyperpolarization which may involve K+ channels, and a depolarization which depends on external Ca2+. The present paper explores the role of the hyperpolarization in the triggering of the acrosome reaction. The artificial hyperpolarization of Lytechinus pictus sperm with valinomycin in K(+)-free seawater raised the pHi, caused a small increase in 45Ca2+ uptake, and triggered some AR. When the cells were depolarized with KCl (30 mM) 40-60 sec after the induced hyperpolarization, the pHi decreased and there was a significant increase in 45Ca2+ uptake, [Ca2+]i, and the AR. This waiting time was necessary in order to allow the pHi change required for the AR to occur. Thus, the jelly-induced hyperpolarization may lead to the intracellular alkalinization required to trigger the AR, and, on its own or via pHi, may regulate Ca2+ transport systems involved in this process. Because of the key role played by K+ in the triggering of the AR, the presence and characteristics of ion channels in L. pictus isolated sperm plasma membranes are being explored. Planar lipid bilayers into which these membranes were incorporated by fusion displayed 85 pS single channel transitions which were cation selective.  相似文献   

13.
Microdissected beta-cell-rich pancreatic islets of ob/ob mice were used in studies of the relationship between intracellular pH (pHi) and 45Ca2+ uptake and insulin release. Stepwise increases in extracellular pH (pHo) from 6.80 to 8.00 resulted in a parallel, although less pronounced, elevation of pHi from 7.24 to 7.69. Experimental conditions that alkalinize the islet cell interior, i.e. addition of 5 mM-NH4+, sudden withdrawal of extracellular bicarbonate buffer or increase in pHo, induced insulin secretion in the absence of other types of secretory stimulation (1 mM-D-glucose). Intracellular acidification by lowering pHo below 7.40 or sudden addition of bicarbonate buffer did not induce insulin secretion. The removal of extracellular bicarbonate buffer, increase in pHo from 7.40 to 8.00, or the addition of 5 mM-L-5-hydroxytryptophan or 5 mM-NH4+, which all alkalinize the islet cells and induce insulin secretion, also increased the La3+-non-displaceable 45Ca2+ uptake in the presence of 1 mM-D-glucose. The results suggest that intracellular alkalinization in beta-cells can trigger insulin secretion. Taken together with the fact that D-glucose increases pHi in the islet cells, the results also point to the possibility that alkalinization may be a link in the stimulus-secretion coupling sequence in beta-cells.  相似文献   

14.
Cytoplasmic pH (pHi) regulation was studied in thioglycolate-elicited murine macrophages using fluorescent probes. Acid-loaded macrophages regained normal pHi by extrusion of H+ equivalents across the plasma membrane. A fraction of this recovery was due to Na+/H+ exchange, as evidenced by its partial Na+ dependence and amiloride sensitivity. The residual, Na+-independent pHi recovery (approximately 50% of the total) persisted in the nominal absence of HCO3- and was insensitive to disulfonic stilbenes, ruling out mediation by anion exchange. In contrast, intracellular alkalinization and H+ extrusion from the cells were inhibited by N-ethylmaleimide, by N,N'-dicyclohexylcarbodiimide or by prior depletion of intracellular ATP. These observations are consistent with the existence of a H+-pumping ATPase in the plasma membrane of macrophages. The mechanism of activation of the ATP-dependent H+ extrusion process was also investigated. In other systems, Ca2+ mobilization has been suggested to signal an exocytic insertion of H+ pumps into the plasma membrane. Acid loading of macrophages was accompanied by an elevation of the cytosolic Ca2+ concentration ([Ca2+]i), measured using indo-1. These results are consistent with a role for Ca2+ mobilization in the activation of H+ extrusion.  相似文献   

15.
In a non-isotonic environment, cells can shrink or swell and return to their normal shape by activating ion transport pathways. Changes in intracellular pH (pHi) after osmotic stress have been identified in several cells. In order to study the mechanisms that regulate cytosolic pH of rat mast cells in a hypertonic medium, we used the pH sensitive dye, BCECF. Under these hypertonic conditions, pHi undergoes an alkalinization following an initial acidification. The alkalinization is mediated by a Na+/H+ exchanger, since it is inhibited by amiloride and lack of extracellular sodium. Under these conditions, the alkalinization is increased with the PKC activators, TPA and OAG, and partially blocked with trifluoperazine, an unspecific protein kinase C (PKC) and Ca2+ calmodulin-dependent protein kinases (Ca2+/CaM K) inhibitor. There is also an anion exchanger, blocked with DIDS but not activated by PKC, that participates in the observed alkalinization. However, Na+/H+ exchanger is the main mechanism involved in the alkalinization of pHi of mast cells in a hyperosmotic environment.  相似文献   

16.
We examined the effect of membrane potential (Em) on the activity of the plasma membrane Ca2+ pump in cultured rat aortic smooth muscle cells (VSMCs). Inside-negative K+ diffusion potential higher or lower than the resting Em (-46 mV) was artificially imposed on VSMCs with various concentrations of extracellular K+ (K+o) and 1 microM valinomycin. We found that the recovery phase of the intracellular Ca2+ transient elicited with 1 microM ionomycin was accelerated by depolarizing Em, whereas it was retarded by hyperpolarizing Em. The rate of extracellular Na+ (Na+o)-independent 45Ca2+ efflux from VSMCs stimulated with 1 microM ionomycin increased almost linearly with a change in Em from -98 to -3 mV. This effect of Em was abolished by extracellularly added LaCl3 or a combination of high pH (pH 8.8) and high Mg2+ (20 mM), conditions that presumably inhibit the plasma membrane Ca2+ pump (Furukawa, K.-I., Tawada, Y., & Shigekawa, M. (1988) J. Biol. Chem. 263, 8058-8065). Intracellular contents of Na+ and K+ and intracellular pH, on the other hand, were not influenced by the change in Em under the conditions used. These results indicate that alteration in Em can modulate the intracellular Ca2+ concentration in intact VSMCs by changing the rate of Ca2+ extrusion by the plasma membrane Ca2+ pump. The data strongly suggest that the plasma membrane Ca2+ pump in VSMCs is electrogenic.  相似文献   

17.
Regulation of cytoplasmic pH (pHi) of the human monoblastic U-937 and erythroleukemic K-562 cell lines was investigated. The apparent resting pHi, as assessed by the fluorescent pH probe quenel, were 6.61 and 6.75 for the U-937 and K-562 cells, respectively. When extracellular Na+ was substituted by equimolar choline+, pHi decreased by about 0.2 units. The protein kinase C activating beta-form of the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA; 10(-10) and 10(-7) M) induced a dose-dependent alkalinization in both cell types of 0.03-0.12 units, whereas the alpha-form was inactive. The response was detectable after about 2 min and reached steady-state 10-15 min later. In the K-562 cells the alkalinization was mediated by Na+/H+ exchange as it was accompanied by stimulation of H+ extrusion and abolished by Na+ removal. The TPA response in the U-937 cells, however, was unaffected by Na+ removal, not accompanied by H+-efflux, and thus unrelated to Na+/H+ exchange. Since electron microscopy indicated development of multivesicular bodies with an acidic interior, the alkalinization can probably be accounted for by an intracellular mechanism. Ionomycin (10(-5) M) induced a rapid increase in the cytoplasmic Ca2+ concentration of both cell types and this response was accompanied by acidification followed by a Na+-dependent recovery. In the U-937, but not in the K-562, cells this recovery was followed by a net alkalinization. It is concluded that both cell types possess a Na+/H+ exchange of importance for pHi but that this mechanism is regulated differently in the U-937 and K-562 cells.  相似文献   

18.
The ionic nature and pharmacological properties of the outward current activated by membrane depolarization were studied on isolated neurones of the snail Helix pomatia, placed in Na+- and Ca2+-free extracellular solutions and intracellularly perfused with K+-free solution ("nonspecific outward current"). It was shown that the amplitude and reversal potential of this current (estimated from instantaneous current-voltage characteristics) are determined mainly by the transmembrane gradient for H+ ions. Lowering of pHi induced an increase in the current amplitude and a shift of the reversal potential to more negative values; the shift magnitude was comparable with that predicted for the hydrogen electrode. Raising pHi, as well as lowering pHo, induced a decrease in the current amplitude and a displacement of the current activation curve to more positive potentials. Addition of EGTA (8 mmol/l) to the intracellular perfusate did not affect the current amplitude. Extracellular 4-aminopyridine (10 mmol/l), verapamil (0.25 mmol/l) or Cd2+ (0.5 mmol/l) blocked the current. It is concluded that the current studied is carried mainly by H+ ions. In the same neurones the nature of the fast decay of the calcium inward current was also studied (in the presence of extracellular Ca2+ ions). This decay considerably slowed when pHi was raised or pHo was lowered, and it became less pronounced upon extracellular application of 4-aminopyridine or upon intracellular introduction of phenobarbital (4 mmol/l) and tolbutamide (3 mmol/l). It is suggested that the fast decay of the calcium inward current is due to activation of a Ca-sensitive component of the hydrogen current which depends on accumulation of Ca2+ ions. The possible physiological role of the transmembrane hydrogen currents is discussed.  相似文献   

19.
Cytosolic free calcium spiking affected by intracellular pH change   总被引:1,自引:0,他引:1  
The characteristics underlying cytosolic free calcium oscillation were evaluated by superfused dual wave-length microspectrofluorometry of fura-2-loaded single acinar cells from rat pancreas. Application of a physiological concentration of cholecystokinin octapeptide (CCK) (20 pM) induced a small basal increase in cytosolic free calcium concentration ([Ca2+]i) averaging 34 nM above the prestimulation level (69 nM) with superimposed repetitive Ca2+ spike oscillation. The oscillation amplitude averaged 121 nM above the basal increase in [Ca2+]i and occurred at a frequency of one pulse every 49 s. Although extracellular Ca2+ was required for maintenance of high frequency and amplitude of the spikes with increase in basal [Ca2+]i, the primary source utilized for oscillation was intracellular. The threshold of the peak [Ca2+]i amplitude for causing synchronized and same-sized oscillations was less than 300 nM. The [Ca2+]i oscillation was sensitive to intracellular pH (pHi) change. This is shown by the fact that the large pHi shift toward acidification (delta pHi decrease, 0.95) led to a basal increase in [Ca2+]i to the spike peak level with inhibiting Ca2+ oscillation. The pHi shift toward alkalinization (delta pHi increase, 0.33) led to a basal decrease in [Ca2+]i to the prestimulation level, possibly due to reuptake of Ca2+ into the Ca2+ stores, with inhibiting Ca2+ oscillation. Whereas extracellular pH (pHo) change had only minimal effects on Ca2+ oscillation (and/or Ca2+ release from intracellular stores), the extra-Ca2+ entry process, which was induced by higher concentrations of CCK, was totally inhibited by decreasing pHo from 7.4 to 6.5. Thus the major regulatory sites by which H+ affects Ca2+ oscillation are accessible from the intracellular space.  相似文献   

20.
The mechanism by which human alpha-thrombin activates the Na+/H+ exchanger was studied in cultured neonatal rat aortic smooth muscle cells. Thrombin (0.4 unit/ml) caused a rapid cell acidification followed by a slow, amiloride-inhibitable alkalinization (0.10-0.14 delta pHi above base line). In protein kinase C down-regulated cells (exposed to phorbol 12-myristate 13-acetate for 24 or 72 h), the delta pHi induced by thrombin was only partially attenuated. This protein kinase C-independent activation of the Na+/H+ exchanger was blocked by pertussis toxin (islet activating protein (IAP)), reducing delta pHi by 50%. IAP did not directly inhibit Na+/H+ exchange activity as assessed by the response to intracellular acid loading. Thrombin also stimulated arachidonic acid release by 2.5 fold and inositol trisphosphate release by 6.2 fold. IAP inhibited both of these activities by 50-60%. Intracellular Ca2+ chelation with 120 microM quin2 prevented the thrombin-induced Ca2+ spike, inhibited thrombin-induced arachidonic acid release by 75%, and inhibited thrombin-induced activation of the Na+/H+ exchanger in protein kinase C-deficient cells by 65%. Increased intracellular [Ca2+] alone was not sufficient to activate the Na+/H+ exchanger, since ionomycin (0.3-1.5 microM) failed to elevate cell pH significantly. 10 microM indomethacin inhibited thrombin-induced delta pHi in both control and protein kinase C down-regulated cells by 30-50%. Thus, thrombin can activate the Na+/H+ exchanger in vascular smooth muscle cells by a Ca2+-dependent, pertussis toxin-sensitive pathway which does not involve protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号