首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechano- and chemoafferent responsiveness as well as outputs of identified cerebral neurones were investigated by electrophysiological methods in Helix pomatia L. the axonal projections of the identified cells were studied by intracellular staining. The studied neurones proved to be unipolar, their main axon branches were found in ipsilateral lip nerves. They could be divided into several groups according to their spontaneous activity, input and output organization and the selectivity of their responses to different tactile and taste stimuli applied to the lip. The activity of most of the neurones could be influenced by both ipsi- and contralateral inputs. They receive afferent input mostly through the medial lip nerves and their efferent information is transferred to the periphery mainly through the pair of inner lip nerves. There were seven neurones among the identified cells which responded selectively to taste stimuli identified in previous behavioural tests as phagostimulants. They can be considered as elements of the cerebral system regulating taste discrimination and feeding.  相似文献   

2.
The cellular localization of the biogenic amines dopamine and serotonin was investigated in the ventral nerve cord of the cricket, Gryllus bimaculatus, using antisera raised against dopamine, -tyrosine hydroxylase and serotonin. Dopamine-(n<-70) and serotonin-immunoreactive (n<-120) neurones showed a segmental arrangement in the ventral nerve cord. Some neuromeres, however, did not contain dopamine-immunoreactive cell bodies. The small number of stained cells allowed complete identification of brain and thoracic cells, including intersegmentally projecting axons and terminal arborizations. Dopamine-like immunostaining was found primarily in plurisegmental interneurones with axons descending to the soma-ipsilateral hemispheres of the thoracic and abdominal ganglia. In contrast, serotonin-immunostaining occurred predominantly in interneurones projecting via soma-contralaterally ascending axons to the thorax and brain. In addition, serotonin-immunoreactivity was also present in efferent cells and afferent elements. Serotonin-immunoreactive, but no dopamine-immunoreactive, varicose fibres were observed on the surface of some peripheral nerves. Varicose endings of both dopamine-and serotonin-immunoreactive neurones occurred in each neuromere and showed overlapping neuropilar projections in dorsal and medial regions of the thoracic ganglia. Ventral associative neuropiles lacked dopamine-like immunostaining but were innervated by serotonin-immunoreactive elements. A colocalization of the two amines was not observed. The topographic representation of neurone types immunoreactive for serotonin and dopamine is discussed with respect to possible modulatory functions of these biogenic amines in the central nervous system of the cricket.  相似文献   

3.
Using a well characterized anti-serum, the distribution of octopamine-like immunoreactive neurones is described in the locust seventh abdominal (A7) and terminal ganglia (TG), which are associated with genital organs. Apart from 4 paired ventral somata occasionally observed in the TG, all labelled cells could be identified as efferent dorsal- and ventral unpaired median (DUM/VUM) neurones by virtue of the characteristic large size and position of their somata, projections of their primary neurites in DUM-cell tracts, and bifurcating axons which arise from dorsal T-junctions and enter peripheral nerves. For the examined ganglia our data indicate that the whole population of efferent DUM and VUM-cells, defined here as progeny of the segment specific unpaired median neuroblast with peripheral axons, are octopaminergic, and that equal numbers of these cells occur in both sexes: 8 in A7 and 11 in TG. Sex-specific differences are probably restricted to the axonal projections of 5 octopamine-like immunoreactive DUM-somata in A7, and 5 in TG, which in females project into their segment specific sternal nerves, but in males into the genital nerve of the TG. Numerous intersegmentally projecting octopamine-like immunoreactive fibres traverse both ganglia. The majority probably stem from previously described octopamine-like immunoreactive neurones in the thoracic and suboesophageal ganglia.  相似文献   

4.
Summary The octavo-lateral efferent system of several anuran species was studied by means of retrograde transport of horseradish peroxidase. This system is organized similarly in all larval anurans and in all adult aglossids. All have two groups of efferent neurons in the nucleus reticularis medialis between the VIIIth and the IXth motor nucleus. The caudal group consists of efferent neurons that supply the posterior lateral-line nerve (NLLp) and a considerably smaller group of neurons supplying both the NLLp and the anterior lateral-line nerve (NLLa). The rostral group is composed of efferent neurons supplying the NLLa, neurons projecting to the inner ear and neurons supplying both the inner ear and the NLLa. Efferent neurons of the VIIIth cranial nerve exhibit a rostrocaudal cytoarchitectonic differentiation. Caudal perikarya, which are rounder in shape than those of the rostral part, have a dendritic projection to the superior olive. It is suggested that this differentiation reflects a functional differentiation of acoustic and vestibular efferent neurons.Labeled neurons were ipsilateral to the site of application of HRP. None were found in the vestibular nuclei or in the cerebellum.Efferent axons projecting to neuromasts of the NLLa leave the medulla with the VIIth nerve, axons projecting to neuromasts of the NLLp exit via the IXth nerve. Cell counts and the observation of axonal branching revealed that efferent units of both the lateral-line and the VIIIth-nerve system supply more than one receptor organ. In contrast to the lateral-line system, dendrites of efferent neurons of the VIIIth nerve project dorsally onto its nuclei, and afferents of the VIIIth nerve project onto efferent neurons. These structures most probably represent a feedback loop between the afferent and efferent systems of the VIIIth cranial nerve.  相似文献   

5.
We developed a method for detecting activity of axonal cholinesterase (CE) and carbonic anhydrase (CA)--markers for motor and sensory nerve fibers (NFs)--in the same histological section. To reach this goal, cross-sections of muscle nerves were sequentially incubated with the standard protocols for CE and CA histochemistry. A modified incubation medium was used for CA in which Co++ is replaced by Ni++. This avoids interference of the two histochemical reactions because Co++ binds unspecifically to the brown copper-ferroferricyanide complex representing CE activity, whereas Ni++ does not. Cross-sections of the trapezius muscle nerve containing efferent and afferent NFs in segregated fascicles showed that CE activity was confined to motor NFs. Axonal CA was detected solely in sensory NFs. The number of labeled motor and sensory NFs determined in serial cross-sections stained with either the new or the conventional technique was not significantly different. Morphometric analysis revealed that small unreactive NFs (diameter less than 5 microns) are afferent, medium-sized ones (5 microns less than d less than 7 microns) are unclassifiable, and large ones (d greater than 7 microns) are efferent. The heterogenous CE activity of thick (alpha) motor NFs is linked to the type of their motor units. "Fast" motor units contain CE reactive NFs; "slow" ones have CE negative neurites.  相似文献   

6.
The distribution of central axons of receptor cells of the eyes and the locations of neurons sending axons into the optic nerves were studied in the cerebral ganglia of the pulmonate mollusksLymnaea stagnalis andHelix sp. by the method of axonal transport of cobalt chloride injected via the optic nerves. Afferent fibers of these nerves form terminal ramifications (chiefly dorsally) in the middle part of the cerebral ganglion. Some of them pass through the commissure to the symmetrical region of the opposite cerebral ganglion. Neurons innervating the eyes are located in several regions of both cerebral ganglia. InLymnaea they are distributed near the point of entry of the optic nerve, in the region of the commissure, the mesocerebrum, and the posterior part of the ganglion. InHelix these neurons are found in the same regions except in the posterior part of the ganglion. In electrophysiological experiments responses of neurons in these parts of the cerebral ganglion to adequate stimulation of the eye were recorded. Differences in the character of responses and also the presence of neurons indifferent to stimulation of the eye are evidence of the functional heterogeneity of these areas. This suggests that morphologically separate visual centers do not exist in the cerebral ganglion of the Pulmonata. Neurons giving specific responses to stimulation of the eye and evidently belonging to different levels of the visual system (afferent or efferent divisions) are closely connected both with each other and with cells of other functional systems.A. A. Ukhtomskii Physiological Research Institute, A. A. Zhdanov Leningrad State University. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 179–184, March–April, 1982.  相似文献   

7.
Differential interference contrast micrographs from stretched animals, serially sectioned semi-thin and ultrathin sections revealed that the cerebral ganglia (supraoesophageal mass) of the eulardigrade Milnesium tardigradum lie above the buccal tube and adjacent tissue like a saddle. It has an anterior indentation which is penetrated by two muscles that arise from the cuticle of the forehead. The cerebral ganglia consist of lateral outer lobes bearing an eye on each side, and two inner lobes which extend caudally. Between the inner lobes a cone-like projection tapers into a nerve bundle. Each outer lobe is joined with the first ventral ganglion. From the outer lobe near the eye the ganglion for a posterolateral sensory field extends to the epidermis. Anterior to the supraoesophageal mass are three dorsal ganglia for the upper three peribuccal papillae. Two additional ganglia attached to the cerebral mass supply the lateral cephalic papillae. The cerebral ganglia are covered by a thin neural lamella. The pericarya which surround the neuropil have large nuclei. Near the axons in the centre of the supraoesophageal mass the cytoplasm is crowded with vesicles of different size and appearance. Some of them resemble synaptic vesicles while others resemble dense core bodies. Structurally different types of synapses and axons can be distinguished within the neuropil.  相似文献   

8.
9.
Inner ear efferent neurons are part of a descending centrifugal pathway from the hindbrain known across vertebrates as the octavolateralis efferent system. This centrifugal pathway terminates on either sensory hair cells or eighth nerve ganglion cells. Most studies of efferent development have used either avian or mammalian models. Recent studies suggest that prevailing notions of the development of efferent innervation need to be revised. In birds, efferents reside in a single, diffuse nucleus, but segregate according to vestibular or cochlear projections. In mammals, the auditory and vestibular efferents are completely separate. Cochlear efferents can be divided into at least two distinct, descending medial and lateral pathways. During development, inner ear efferents appear to be a specific motor neuron phenotype, but unlike motor neurons have contralateral projections, innervate sensory targets, and, at least in mammals, also express noncholinergic neurotransmitters. Contrary to prevailing views, newer data suggest that medial efferent neurons mature early, are mostly, if not exclusively, cholinergic, and project transiently to the inner hair cell region of the cochlea before making final synapses on outer hair cells. On the other hand, lateral efferent neurons mature later, are neurochemically heterogeneous, and project mostly, but not exclusively to the inner hair cell region. The early efferent innervation to the ear may serve an important role in the maturation of afferent responses. This review summarizes recent data on the neurogenesis, pathfinding, target selection, innervation, and onset of neurotransmitter expression in cholinergic efferent neurons.  相似文献   

10.
In the central nervous system of the terrestrial snail Helix, the gene HCS2, which encodes several neuropeptides of the CNP (command neuron peptide) family, is mostly expressed in cells related to withdrawal behavior. In the present work, we demonstrate that a small percentage (0.1%) of the sensory cells, located in the sensory pad and in the surrounding epithelial region ("collar") of the anterior and posterior tentacles, is immunoreactive to antisera raised against the neuropeptides CNP2 and CNP4, encoded by the HCS2 gene. No CNP-like-immunoreactive neurons have been detected among the tentacular ganglionic interneurons. The CNP-like-immunoreactive fiber bundles enter the cerebral ganglia within the nerves of the tentacles (tentacular nerve and medial lip nerve) and innervate the metacerebral lobe, viz., the integrative brain region well-known as the target area for many cerebral ganglia nerves. The procerebral lobe, which is involved in the processing of olfactory information, is not CNP-immunoreactive. Our data suggest that the sensory cells, which contain the CNP neuropeptides, belong to a class of sensory neurons with a specific function, presumably involved in the withdrawal behavior of the snail.  相似文献   

11.
Nitric oxide is well established as a signalling molecule in the nervous system of vertebrates and invertebrates. In this study we evaluate the usefulness of NADPHdiaphorase histochemistry and immunocytochemistry for detecting the presence of nitric oxide synthase in locusts. We describe the distribution of putative nitric oxide releasing neurones and stained neuropiles in the locust ventral nerve cord, in particular the abdominal ganglia and abdominal neuromeres. NADPHdiaphorase histochemistry revealed prominent staining in all neuropilar regions and a specific distribution pattern of stained cell bodies in all examined ganglia. Nitric oxide synthase immunocytochemistry, using a commercially available universal antibody, labelled cells in corresponding positions within the ganglia. This was confirmed by double labelling of alternate sections. Western blot analysis demonstrated that in locusts this universal NOS-antibody binds to a protein of similar size to nitric oxide synthase identified in other insect species. The antibody also labelled axons in most peripheral nerves of all examined ganglia, whereas NADPHdiaphorase histochemistry only revealed such stained fibres within peripheral nerves in some preparations, because they may have been masked by intense background staining. We therefore conclude that nitric oxide synthase-immunocytochemistry and NADPHd histochemistry are both good markers for the presence of nitric oxide synthase in the locust ventral nerve cord, and that nitric oxide may be used as a signalling molecule by efferent neurones in locusts.  相似文献   

12.
Degeneration of afferent nerve fibres was induced in rats in order to observe its effects on the properties of the extra-junctional membrane of soleus muscle fibres. In one approach, removal of dorsal root ganglia L4 and L5 was accomplished in preparations with intact or impulse-blocked (with tetrodotoxin containing cuffs around the sciatic nerve) efferent innervation. Spike resistance to tetrodotoxin developed in the inactive deafferented preparations earlier and to a greater extent than in control, that is only impulse-blocked, preparations. In another series of experiments, efferent denervation alone proved to be less effective than the association of efferent and afferent denervation. On the other hand, section of the afferent fibres central to the dorsal root ganglia was without effect. These results are consistent with the interpretation that products of nerve degeneration contribute together with inactivity to the development of the extrajunctional membrane changes observed in skeletal muscle after denervation.  相似文献   

13.
To examine the presence of nitric oxide synthase (NOS) in the sensory system of the glossopharyngeal and vagus nerves of teleosts, nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) activity and immunoreactivity for NOS were examined in the puffer fish Takifugu niphobles. The nitrergic sensory neurons were located in the ganglia of both the glossopharyngeal and the vagal nerves. In the vagal ganglion, positive neurons were found in the subpopulations for the branchial rami and the coelomic visceral ramus, but not for the posterior ramus or the lateral line ramus. In the medulla, nitrergic afferent terminals were found in the glossopharyngeal lobe, the vagal lobe, and the commissural nucleus. In the gill structure, the nitrergic nerve fibers were seen in the nerve bundles running along the efferent branchial artery of all three gill arches. These fibers appeared to terminate in the proximal portion of the efferent filament arteries of three gill arches. On the other hand, autonomic neurons innervating the gill arches were unstained. These results suggest that nitrergic sensory neurons in the glossopharyngeal and vagal ganglia project their peripheral processes through the branchial rami to a specific portion of the branchial arteries, and they might play a role in baroreception of this fish. A possible role for nitric oxide (NO) in baroreception is also discussed.  相似文献   

14.
Acute electrophysiological experiments on cats have shown that after preliminary decentralization of the solar plexus, accompanied by degeneration of spinal and vagal afferent and preganglionic efferent fibers in its postganglionic (mesenteric) nerves, only slow activity of the C-afferents is recorded in the peripheral segments of the mesenteric nerves instead of activity of the A-, B-, and C-fibers in the control (before degeneration). Activity of the C-afferents is intensified with the appearance of spontaneous contractions of the small intestine and also after gentle stretching of the corresponding segment of the intestine by inflation of a rubber balloon. After preliminary division of the mesenteric nerves, accompanied by degeneration of the postganglionic fibers in their peripheral segments, activity of C-afferents only also was observed, but it was much weaker than in the first series of experiments. After preliminary decentralization of the solar plexus and division of the mesenteric nerves application of a single electrical stimulus to the central part of one of the divided mesenteric nerves evokes a reflex electrical response in the other mesenteric nerves which disappears after treatment of the ganglia of the solar plexus with azamethonium bromide and also after electrical stimulation of the mesenteric nerves at 10–20 Hz. However, after decentralization only, this response was much weaker than after division of the mesenteric nerves. It is concluded that these peripheral responses of the intestinal nerves are due to excitation of two types of peripheral afferent neurons: the bodies of some lie in the small intestine and their long axons (C-afferents) run to the ganglia of the solar plexus; the bodies of the others lie in the ganglia of the solar plexus and their long axons (also C-afferents) run to the intestine, where they terminate in its receptors.Institute of Physiology, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Neirofiziologiya, Vol. 6, No. 2, pp. 175–185, March–April, 1974.  相似文献   

15.
Using light- and electron-microscopic immunohistochemistry, it was shown that primary sensory nerve endings in Golgi tendon organs of the grey short-tailed opossum (Monodelphis domestica) contain immunoreactivities to a polyclonal antibody directed against calcitonin gene-related peptide (CGRP). Myelinated afferent axons (6-9 microns in diameter) of the Golgi tendon organs stained moderately for CGRP. Sensory nerve endings within the sensory compartment of the Golgi tendon organs displayed electron-dense accumulations corresponding to dark-brown staining in adjacent semithin sections. On the outer surface of tendon organs C fibre bundles were observed showing CGRP-like immunoreactivity.  相似文献   

16.
In rats, stimulation of renal mechanoreceptors by increasing ureteral pressure results in a contralateral inhibitory renorenal reflex response consisting of increases in ipsilateral afferent renal nerve activity, decreases in contralateral efferent renal nerve activity, and increases in contralateral urine flow rate and urinary sodium excretion. Mean arterial pressure is unchanged. To study possible functional central interaction among the afferent renal nerves and the aortic and carotid sinus nerves, the responses to renal mechanoreceptor stimulation were compared in sinoaortic denervated rats and sham-denervated rats before and after vagotomy. In contrast to sham-denervated rats, there was an increase in mean arterial pressure in response to renal mechanoreceptor stimulation in sinoaortic-denervated rats. However, there were no differences in the renorenal reflex responses among the groups. Thus, our data failed to support a functional central interaction among the renal, carotid sinus, and aortic afferent nerves in the renorenal reflex response to renal mechanoreceptor stimulation. Studies to examine peripheral interaction between efferent and afferent renal nerves showed that marked reduction in efferent renal nerve activity produced by spinal cord section at T6, ganglionic blockade, volume expansion, or stretch of the junction of superior vena cava and right atrium abolished the responses in afferent renal nerve activity and contralateral renal function to renal mechanoreceptor stimulation. Conversely, increases in efferent renal nerve activity caused by thermal cutaneous stimulation increased basal afferent renal nerve activity and its responses to renal mechanoreceptor stimulation. These data suggest a facilitatory role of efferent renal nerves on renal sensory receptors.  相似文献   

17.
The major canine cardiopulmonary nerves which arise from the middle cervical and stellate ganglia and the vagi course toward the heart in the dorsal mediastinum where they form, at the base of the heart dorsal to the pulmonary artery and aorta, the dorsal mediastinal cardiac nerves. In addition, the left caudal pole and interganglionic nerves project onto the left lateral side of the heart as the left lateral cardiac nerve. These nerves contain afferent and (or) efferent axons which, upon stimulation, modify specific cardiac regions and (or) systemic pressure. In addition, with the exception of the left lateral cardiac nerve, stimulation of each of these nerves produces compound action potentials in the cranial ends of the majority of the major cardiopulmonary nerves demonstrating that axons in each dorsal mediastinal cardiac nerve interconnect with axons in the majority of the cardiopulmonary nerves. Axons in the left lateral cardiac nerve connect primarily with axons in the left caudal pole and left interganglionic nerves. The dorsal mediastinal nerves project distally onto the heart as coronary nerves accompanying the right or left coronary arteries. These innervated the ventricular myocardium which is supplied by their respective vessels. The left lateral cardiac nerve projects directly onto the lateral epicardium of the left ventricle. The dorsal mediastinal and left lateral cardiac nerves are the major sympathetic cardiac nerves. Thus, the cardiac nerves located in the mediastinum at the base of the heart are not simple extensions of cardiopulmonary nerves, but rather have a unique anatomy and function of their own.  相似文献   

18.
Neurotoxic effect of capsaicin in mammals   总被引:1,自引:0,他引:1  
Capsaicin is now widely used to explore and/or prove the role of peptide-containing primary afferent neurones in different somato- and viscerosensory functions. The present paper deals with the morphological effects of capsaicin administered according to currently used experimental paradigms. As it has been repeatedly confirmed in the recent literature, administration of capsaicin to newborn mammals results in a highly selective degeneration of a particular population of small sized, B-type primary afferent neurones located in spinal and cranial sensory ganglia. Chemosensitive i.e. capsaicin sensitive primary sensory neurones (CPSNs) correspond to primary sensory ganglion cells which contain neuropeptides. The permanent functional impairments and the decrease in the peptide contents of the sensory neurones observed after neonatal capsaicin treatment may be accounted for an irreversible loss of CPSNs. Direct application of capsaicin to peripheral nerves results in an apparently irreversible functional impairment of unmyelinated afferent fibres implicated in nociceptive, viscerosensory and neurogenic inflammatory mechanisms. Morphological observations indicate that perineural treatment with capsaicin initiates a selective but delayed degeneration process of unmyelinated afferent nerve fibres presumably due to an inhibition of intraneuronal transport mechanisms. In contrast with perineural capsaicin treatment affecting the chemistry and function of the whole sensory neurone, injection of capsaicin into the subarachnoid space results in an irreversible abolition of the "afferent" but not the "efferent" function of CPSNs. Accordingly, noxious thermal or chemical stimuli applied to the peripheral innervation areas of the trigeminal nucleus caudalis or the affected segments of the spinal cord fail to induce nociceptive reflexes because of the degeneration of the central terminals of CPSNs. However, in these same skin areas, application of chemical irritants invariably evoked the neurogenic inflammatory response, indicating that CPSNs deprived of their central terminals maintain their capacity to synthesize and release the peptide(s) responsible for the initiation of that response. In contrast with previous findings, our recent studies furnished evidence for a selective neurodegenerative action of systemically injected capsaicin in adult mammals, as well. Therefore, some of the irreversible functional impairments produced by capsaicin in adult animals may result from the degeneration of a particular subpopulation of CPSNs.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Chemoreception inHirudo medicinalis is thought to be mediated by ciliated cells grouped in sensory structures, the sensilla, arranged in bands on the animal's dorsal lip (Elliott, 1986; Zipseret al., 1994). Furthermore, chemical and/or thermal stimulation of the dorsal lip in reduced preparations evokes changes in the electrical activity of the cephalic nerves that connect the head with the central nervous system. However, the complete trajectory by which the sensory afferents teach the cerebral ganglia has not been demonstrated anatomically. In this study, we traced these pathways following retrograde and/or anterograde transport of carbocyanine dyes (DiI, DiA and DiD) in the cephalic nerves ofHirudo medicinalis and a closely related species,Macrobdella decora. While information regardingMacrobdella's chemoreception is scarce, the two species show some differences with regard to their chemical preferences. Dyes were applied to the sensillar structures along the dorsal lip, or to the cut ends of individual cephalic nerves in fixed preparations that included the lip and attached nerves with or without the head ganglia. After a two week incubation, specimens were mounted and imaged using a confocal microscope.The results show that the axons of the sensory neurons in the sensilla project through the four pairs of cephalic nerves. The sensillar projections are however more numerous in the dorsal nerves than they are in the ventral ones. In addition, the organization of the sensillar bands, the morphology of the pathways and the sensory structures themselves appear to be identical forHirudo andMacrobdella and therefore the behavioral differences in response to appetitive stimuli cannot be readily explained by differences in morphology.  相似文献   

20.
The indirect immunofluorescence technique was used to determine the distribution of peptide-containing axons in the gall bladder of the cane toad, Bufo marinus. In addition, the adrenergic innervation of the gall bladder was examined by use of immunoreactivity to the catecholamine-synthesizing enzyme, tyrosine hydroxylase, and glyoxylic acid-induced fluorescence. On the basis of peptide coexistence, two intrinsic populations of neurones and their projecting fibres could be distinguished substance P neurones and vasoactive intestine peptide neurones. Neither of these two types of neurones contained any other colocalized neuropeptides. Four populations of nerve fibres arising from cell bodies outside the gall bladder were identified: nerves containing colocalized galanin, somatostatin and vasoactive intestinal peptide; nerves containing colocalized calcitonin gene-related peptide and substance P; adrenergic nerves containing neuropeptide Y; and nerves containing only adrenaline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号