首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Oxidative decarboxylation of pyruvate forming acetyl-coenzyme A is a crucial step in many metabolic pathways. In most anaerobes, this reaction is carried out by pyruvate-ferredoxin oxidoreductase (PFOR), an enzyme normally oxygen sensitive except in Desulfovibrio africanus (Da), where it shows an abnormally high oxygen stability. Using site-directed mutagenesis, we have specified a disulfide bond-dependent protective mechanism against oxidative conditions in Da PFOR. Our data demonstrated that the two cysteine residues forming the only disulfide bond in the as-isolated PFOR are crucial for the stability of the enzyme in oxidative conditions. A methionine residue located in the environment of the proximal [4Fe-4S] cluster was also found to be essential for this protective mechanism. In vivo analysis demonstrated unambiguously that PFOR in Da cells as well as two other Desulfovibrio species was efficiently protected against oxidative stress. Importantly, a less active but stable Da PFOR in oxidized cells rapidly reactivated when returned to anaerobic medium. Our work demonstrates the existence of an elegant disulfide bond-dependent reversible mechanism, found in the Desulfovibrio species to protect one of the key enzymes implicated in the central metabolism of these strict anaerobes. This new mechanism could be considered as an adaptation strategy used by sulfate-reducing bacteria to cope with temporary oxidative conditions and to maintain an active dormancy.  相似文献   

2.
3.
The localization of hydrogenase protein in Desulfovibrio gigas cells grown either in lactate-sulfate or hydrogen-sulfate media, has been investigated by subcellular fractionation with immunoblotting and by electron microscopic immunocytochemistry. Subcellular fractionation experiments suggest that no integral membrane-bound hydrogenase is present in D. gigas. About 40% of the hydrogenase activity could be extracted by treatment of D. gigas cells with Tris-EDTA buffer. The rest of the soluble hydrogenase activity (50%) was found in the soluble fraction which was obtained after disruption of Tris-EDTA extracted cells and high speed centrifugation. Both soluble hydrogenase fractions purified to homogeneity showed identical molecular properties including the N-terminal aminoacid sequences of their large and small subunits. Polyacrylamide gel electrophoresis of the proteins of the subcellular fractions revealed a single band of hydrogenase activity exhibiting the same mobility as purified D. gigas hydrogenase. Western blotting carried out on these subcellular fractions revealed crossreactivity with the antibodies raised against (NiFe) hydrogenase. The lack of crossreactivity with antibodies against (FE) or (NiFeSe) hydrogenases, indicated that only (NiFe) type hydrogenase is present in D. gigas.Immunocytolocalization in ultrathin frozen sections of D. gigas cells grown either in lactate-sulfate, pyruvate-sulfate or hydrogen-sulfate media showed only a (NiFe) hydrogenase located in the periplasmic space. The bioenergetics of D. gigas are discussed in the light of these findings.  相似文献   

4.
A protein which contains a cobalt porphyrin was isolated from the sulfate reducer Desulfovibrio gigas. This protein has a molecular weight of approximately 16,700 daltons and is acidic, having an iso-electric point at 3.7. The N-terminal residue was shown to be threonine, and a cobalt analysis gave 0.8 cobalt atoms/molecule, suggesting the presence of a single prosthetic group. The protein has a violet color with absorption bands typical of a metal porphyrin center with maxima at 420 nm, 580 nm with a shoulder at 550 nm. The ratio A420(γ)A588(α) is 2.1. The protein has no electron paramagnetic resonance (e.p.r.) spectrum, and as the visible spectrum suggests, it probably contains diamagnetic CoIII porphyrin. However the cobalt centre appears to be protected from reduction by sodium dithionite or sodium borohydride. Attempts at ligand substitution with strong nucleophiles such as CN, causes a slight spectral shift to higher wavelenghts. The cobalt porphyrin can be extracted from the protein with an acidified acetone solution, indicating that it is not covalently bound to the protein.  相似文献   

5.
6.
Flavoredoxin participates in Desulfovibrio gigas thiosulfate reduction pathway. Its 3-dimensional model was generated allowing the oxidized riboflavin-5'-phosphate (FMN) site to be predicted. Residues likely to be involved in FMN-binding were identified (N29, W35, T56, K92, H131 and F164) and mutated to alanine. Fluorescence titration with apoprotein showed that FMN is strongly bound in the wild-type protein. Comparison of K(d) values for mutants suggests that interactions with the phosphate group of FMN, contribute more to binding than the interactions with the isoalloxazine ring. The redox potential of bound FMN determined for wild-type and mutants revealed shifts to less negative values. These findings were correlated with the protein structure in order to contribute to a better understanding of the structure-function relationships in flavoredoxin.  相似文献   

7.
Nitric oxide and S-nitrosothiols (SNOs) are widespread signaling molecules that regulate immunity in animals and plants. Levels of SNOs in vivo are controlled by nitric oxide synthesis (which in plants is achieved by different routes) and by S-nitrosoglutathione turnover, which is mainly performed by the S-nitrosoglutathione reductase (GSNOR). GSNOR is encoded by a single-copy gene in Arabidopsis (Arabidopsis thaliana; Martínez et al., 1996; Sakamoto et al., 2002). We report here that transgenic plants with decreased amounts of GSNOR (using antisense strategy) show enhanced basal resistance against Peronospora parasitica Noco2 (oomycete), which correlates with higher levels of intracellular SNOs and constitutive activation of the pathogenesis-related gene, PR-1. Moreover, systemic acquired resistance is impaired in plants overexpressing GSNOR and enhanced in the antisense plants, and this correlates with changes in the SNO content both in local and systemic leaves. We also show that GSNOR is localized in the phloem and, thus, could regulate systemic acquired resistance signal transport through the vascular system. Our data corroborate the data from other authors that GSNOR controls SNO in vivo levels, and shows that SNO content positively influences plant basal resistance and resistance-gene-mediated resistance as well. These data highlight GSNOR as an important and widely utilized component of resistance protein signaling networks conserved in animals and plants.  相似文献   

8.
Sulfate-reducing bacteria, like Desulfovibrio vulgaris Hildenborough, have developed a set of reactions allowing them to survive in oxic environments and even to reduce molecular oxygen to water. D. vulgaris contains a cytoplasmic superoxide reductase (SOR) and a periplasmic superoxide dismutase (SOD) involved in the elimination of superoxide anions. To assign the function of SOD, the periplasmic [Fe] hydrogenase activity was followed in both wild-type and sod deletant strains. This activity was lower in the strain lacking the SOD than in the wild-type when the cells were exposed to oxygen for a short time. The periplasmic SOD is thus involved in the protection of sensitive iron-sulfur-containing enzyme against superoxide-induced damages. Surprisingly, production of the periplasmic [Fe] hydrogenase was higher in the cells exposed to oxygen than in those kept in anaerobic conditions. A similar increase in the amount of [Fe] hydrogenase was observed when an increase in the redox potential was induced by addition of chromate. Viability of the strain lacking the gene encoding [Fe] hydrogenase after exposure to oxygen for 1 h was lower than that of the wild-type. These data reveal for the first time that production of the periplasmic [Fe] hydrogenase is up-regulated in response to an oxidative stress. A new function of the periplasmic [Fe] hydrogenase in the protective mechanisms of D. vulgaris Hildenborough toward an oxidative stress is proposed.  相似文献   

9.
A dinitrophenol (DNP)-stimulated adenosine triphosphatase (ATPase) has been found in both the soluble and particulate fractions of the anaerobic sulfate-reducing bacterium, Desulfovibrio gigas. As the soluble ATPase was labile to storage, only the particulate enzyme was studied in detail. It was optimally stimulated by DNP at 4 mm, and activity was insensitive to inhibition by ouabain. The ATPase was stimulated by both Ca(2+) and Mg(2+), but the magnitude of the stimulation was dependent upon pH. In the presence of Ca(2+) the optimum pH was 6.5, whereas, in the presence of Mg(2+) the pH optimum was 8.0. However, under optimal conditions the activity was the same with either Mg(2+) or Ca(2+). Both adenosine triphosphate and guanosine triphosphate were hydrolyzed, but activity toward guanosine triphosphate was only one-tenth that observed with adenosine triphosphate.  相似文献   

10.
11.
The molybdenum iron-sulphur protein originally isolated from Desulfovibrio gigas by Moura, Xavier, Bruschi, Le Gall, Hall & Cammack [(1976) Biochem. Biophys. Res. Commun. 72, 782-789] has been further investigated by e.p.r. spectroscopy of molybdenum(V). The signal obtained on extended reduction of the protein with sodium dithionite has been shown, by studies at 9 and 35 HGz in 1H2O and 2H2O and computer simulations, to have parameters corresponding to those of the Slow signal from the inactive desulpho form of various molybdenum-containing hydroxylases. Another signal obtained on brief reduction of the protein with small amounts of dithionite was shown by e.p.r. difference techniques to be a Rapid type 2 signal, like that from the active form of such enzymes. In confirmation that the protein is a molybdenum-containing hydroxylase, activity measurements revealed that it had aldehyde:2,6-dichlorophenol-indophenol oxidoreductase activity. No such activity towards xanthine or purine was observed. Salicylaldehyde was a particularly good substrate, and treatment of the protein with it also gave rise to the Rapid signal. Molybdenum cofactor liberated from the protein was active in the nit-1 Neurospora crassa nitrate reductase assay. It is concluded that the protein is a form of an aldehyde oxidase or dehydrogenase. From the intensity of the e.p.r. signals and from enzyme activity measurements, 10-30% of the protein in the sample examined appeared to be in the functional form. The evolutionary significance of the protein, which may represent a primitive form of the enzyme rather than a degradation product, is discussed briefly.  相似文献   

12.
The role of Saccharomyces cerevisiae flavohemoglobin (Yhb1) is controversial and far from understood. This study compares the effects of nitrosative and oxidative challenge on the yeast mutant lacking the YHB1 gene. Growth of the mutant was impaired by nitrosoglutathione and peroxynitrite, whereas increased sensitivity to reactive oxygen species was not observed. Increased levels of intracellular NO(*) after incubation with NO(*) donors were found in the mutants cells as compared to the wild-type cells. Deletion of the YHB1 gene was found to augment the reduction of Fe(3+) by yeast cells which suggests that flavohemoglobin participates in regulation of the activity of plasma membrane ferric reductase(s).  相似文献   

13.
Hydrogenase has been found to be located in the periplasmic space of Desulfovibrio gigas, and it is proposed that hydrogenase plays an important and specific role in interspecies hydrogen transfer.  相似文献   

14.
The anaerobic oxidation of protoporphyrinogen to protoporphyrin was demonstrated in extracts of Desulfovibrio gigas. Protoporphyrin formation occurred in the presence of nitrite, hydroxylamine, sulfite, thiosulfate, ATP plus sulfate, NAD+, NADP+, flavin adenine dinucleotide, flavin mononucleotide, fumarate, 2,6-dichlorophenol-indophenol, methyl viologen, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. With dialyzed cell extracts, highest activities were observed with sulfite, NAD+, and NADP+ as electron acceptors. The enzyme for protoporphyrinogen oxidation was localized in the membrane of D. gigas and displayed optimal activity at pH 7.3 and 28 degrees C.  相似文献   

15.
Desulfoviridin preparations from D. gigas showed variations in the position of the absorption maximum the beta-peak) in the 580-nm region of the specturm. On treatment with Na2S2O4 a preparation with a beta-peak at 585 nm was affected rapidly, the 585-nm peak shifting to the 596-nm region; this was partially reversed by K3Fe(CN)6. Treatment of the original preparation with K3Fe(CN)6 resulted in a shift of the beta-peak to 582-583 nm. Desulfoviridins with beta-peaks from 580 to 583 nm were not rapidly affected by Na2S2O4. The spectrum of the chromophore of desulfoviridin way also affected by Na2S2O4 with the peak at 587 nm shifting to 597 nm; this effect was completely reversed by oxygen. There was no evidence to show that spectral variations in desulfoviridin preparations were due to the loss or acquisition of metal ions during growth or to the selection of mutants containing spectrally different desulfoviridins. It is suggested that during biosynethesis oal detachment of the chromophore, thus causing a change towards the spectral properites of the detached chromophore.  相似文献   

16.
Atherosclerosis, the main cause of cardiovascular disease (CD), is a chronic inflammatory condition associated with an overproduction of oxidant species, namely peroxynitrite, which is a powerful oxidant that reacts directly with all biomolecules. Glutathione is an efficient scavenger of peroxynitrite, so, modulation of glutathione synthesis may provide a strategy to selectively protect cells from this oxidant. Here, we investigated the ability of resveratrol, a component of red wine, to prevent peroxynitrite-mediated endothelial cells toxicity and the underlying mechanism. Bovine aortic endothelial cells (BAEC) in primary cultures were treated with authentic peroxynitrite and the cell viability and intracellular glutathione contents were assessed. Our results demonstrate that a long pre-incubation (14 h) of BAEC with resveratrol (1-50 microM) leads to the endothelial cells rescue from injury triggered by authentic peroxynitrite by a mechanism of up-regulation of the intracellular GSH content, for the highest resveratrol concentration tested. Considering the importance of GSH in regulation of cell life, this capacity of resveratrol provides a new mechanism for its cardioprotective effects and may contribute to the development of novel therapeutic strategies.  相似文献   

17.
In the present study, we report the identification of an operon with six coding regions for a multisubunit membrane-bound [NiFe] hydrogenase in the genome of Desulfovibrio gigas. Sequence analysis of the deduced polypeptides reveals a high similarity to subunits of proteins belonging to the family of Ech hydrogenases. The operon is organised similarly to the operon coding for the Ech hydrogenase from Methanosarcina barkeri, suggesting that both encode very similar hydrogenases. Expression of the operon was detected by Northern blot and RT-PCR analyses, and the presence of the encoded proteins was examined by Western blotting. The possible role of this hydrogenase is discussed, relating it with a potential function in the H(2) cycling as a mechanism for energy conservation in D. gigas. The present study provides therefore valuable insights into the open question of the energy conserving mechanism in D. gigas.  相似文献   

18.
We report the kinetic behavior of the enzyme aldehyde oxidoreductase (AOR) from the sulfate reducing bacterium Desulfovibrio gigas (Dg) encapsulated in reverse micelles of sodium bis-(2-ethylhexyl) sulfosuccinate in isooctane using benzaldehyde, octaldehyde, and decylaldehyde as substrates. Dg AOR is a 200-kDa homodimeric protein that catalyzes the conversion of aldehydes to carboxylic acids. Ultrasedimentation analysis of Dg AOR-containing micelles showed the presence of 100-kDa molecular weight species, confirming that the Dg AOR subunits can be dissociated. UV-visible spectra of encapsulated Dg AOR are indistinguishable from the enzyme spectrum in solution, suggesting that both protein fold and metal cofactor are kept intact upon encapsulation. The catalytic constant (k(cat)) profile as a function of the micelle size W(0) (W(0)=[H(2)O]/[AOT]) using benzaldehyde as substrate showed two bell-shaped activity peaks at W(0)=20 and 26. Furthermore, enzymatic activity for octaldehyde and decylaldehyde was detected only in reverse micelles. Like for the benzaldehyde kinetics, two peaks with both similar k(cat) values and W(0) positions were obtained. EPR studies using spin-labeled reverse micelles indicated that octaldehyde and benzaldehyde are intercalated in the micelle membrane. This suggests that, though Dg AOR is found in the cytoplasm of bacterial cells, the enzyme may catalyze the reaction of substrates incorporated into a cell membrane.  相似文献   

19.
Rubredoxins are small, soluble proteins that display a wide variation in thermostability, despite having a high degree of sequence similarity They also vary in the extent to which they are stabilized by solutes such as diglycerol phosphate. Hence, they provide excellent models for studying the mechanisms of thermostabilization. Nuclear magnetic resonance (NMR) spectroscopy can be used to investigate interactions between molecules, as well as subtle changes in conformation in solution, and also provides a means to measure protein stability. The assignment of the proton NMR spectrum of the zinc rubredoxin from Desulfovibrio gigas is presented, together with its structure in solution. The stabilizing effect of diglycerol phosphate on rubredoxin is demonstrated and assessed by determining selected amide proton exchange rates; diglycerol phosphate at 100 mM concentration caused an additional structural stabilization of 1.2 +/-0.4 kJ/mol. The pattern of effects on the exchange rates is discussed in relation to the protein structure.  相似文献   

20.
Evidence is presented for an alternative to the superoxide dismutase (SOD)-catalase oxidative stress defense system in Desulfovibrio vulgaris (strain Hildenborough). This alternative system consists of the nonheme iron proteins, rubrerythrin (Rbr) and rubredoxin oxidoreductase (Rbo), the product of the rbo gene (also called desulfoferrodoxin). A Deltarbo strain of D. vulgaris was found to be more sensitive to internal superoxide exposure than was the wild type. Unlike Rbo, expression of plasmid-borne Rbr failed to restore the aerobic growth of a SOD-deficient strain of Escherichia coli. Conversely, plasmid-borne expression of two different Rbrs from D. vulgaris increased the viability of a catalase-deficient strain of E. coli that had been exposed to hydrogen peroxide whereas Rbo actually decreased the viability. A previously undescribed D. vulgaris gene was found to encode a protein having 50% sequence identity to that of E. coli Fe-SOD. This gene also encoded an extended N-terminal sequence with high homologies to export signal peptides of periplasmic redox proteins. The SOD activity of D. vulgaris is not affected by the absence of Rbo and is concentrated in the periplasmic fraction of cell extracts. These results are consistent with a superoxide reductase rather than SOD activity of Rbo and with a peroxidase activity of Rbr. A joint role for Rbo and Rbr as a novel cytoplasmic oxidative stress protection system in D. vulgaris and other anaerobic microorganisms is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号