首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Cyclization of R- and W-rich hexapeptides has been found to enhance specifically the antimicrobial activity against Gram-negative Escherichia coli. To gain insight into the role of the bacterial outer membrane in mediating selectivity, we assayed the activity of cyclic hexapeptides derived from the parent sequence c-(RRWWRF) against several E. coli strains and Bacillus subtilis, L-form bacteria, and E. coli lipopolysaccharide (LPS) mutant strains, and we also investigated the peptide-induced permeabilization of the outer and inner membrane of E. coli. Wall-deficient L-form bacteria were distinctly less susceptible than the wild type strain. The patterns of peptide-induced permeabilization of the outer and inner E. coli membranes correlated well with the antimicrobial activity, confirming that membrane permeabilization is a detrimental effect of the peptides upon bacteria. Truncation of LPS had no influence on the activity of the cyclic parent peptide, but the highly active c-(RRWFWR), with three adjacent aromatic residues, required the complete LPS for maximal activity. Furthermore, differences in the activity of the parent peptide and its all-D sequence indicated stereospecific interactions with the LPS mutant strains. We suggest that, depending on the primary sequence of the peptides, either hydrophobic interactions with the fatty acid chains of lipid A, or electrostatic interactions disturbing the polar core region and interference with saccharide-saccharide interactions prevail in the barrier-disturbing effect upon the outer membrane and thereby provide peptide accessibility to the inner membrane. The results underline the importance of tryptophan and arginine residues and their relative location for a high antimicrobial effect, and the activity-modulating function of the outer membrane of E. coli. In addition to membrane permeabilization, the data provided evidence for the involvement of other mechanisms in growth inhibition and killing of bacteria.  相似文献   

2.
We examined the bactericidal activity of two proteins that are abundant in the cytoplasmic granules of human eosinophils, major basic protein (MBP) and eosinophil cationic protein (ECP). Unlike the human neutrophil's peptide defensins, both MBP and ECP killed stationary phase Staphylococcus aureus 502A in a simple nutrient-free buffer solution. Although MBP also killed Escherichia coli ML-35 with considerable efficacy under these experimental conditions, the in vitro activity of ECP against E. coli was considerably enhanced if mid-logarithmic phase bacteria replaced stationary phase organisms or if the assay medium was enriched with trypticase soy broth. The antibacterial activity of both eosinophil proteins was modulated by incubation time, protein concentration, temperature and pH. A pBR322-transformed derivative of E. coli ML-35 was used to examine the effects of ECP and MBP on integrity of the bacterial inner membrane (IM) and outer membrane. Although both MBP and ECP caused outer and inner membrane permeabilization when nutrients were present, only MBP was effective under nutrient-free conditions. Two proton ionophores (DNP and carbonyl cyanide m-chlorophenyl hydrazone) protected E. coli from the bactericidal effects of ECP but not from MBP. These findings establish that MBP and ECP have bactericidal properties and suggest that these proteins kill E. coli by similar but nonidentical mechanisms marked by an attack on the target cell's membranes. In view of evidence that high concentrations of ECP and MBP exist in cytoplasmic granules whose contents are translocated to phagocytic vacuoles, we suggest that MBP and ECP contribute to the eosinophil's ability to kill ingested bacteria.  相似文献   

3.
To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.  相似文献   

4.
The cathelicidin-derived antimicrobial tritrpticin could be classified as either Trp-rich or Pro/Arg-rich peptide. We recently found that the sequence modification of tritrpticin focused on Trp and Pro residues led to considerable change in structure and antimicrobial potency and selectivity, but their mechanisms of microbial killing action were still unclear. Here, to better understand the bactericidal mechanisms of tritrpticin and its two analogs, TPA and TWF, we studied their effect on the viability of Gram-positive S. aureus and Gram-negative E. coli in relation to their membrane depolarization. Although TWF more effectively inhibited growth of S. aureus and E. coli than TPA, only a 30 min exposure to TPA was sufficient to kill both bacteria and TWF required a lag period of about 3-6 h for bactericidal activity. Their different bactericidal kinetics was associated with membrane permeabilization, i.e., TWF showed negligible ability to depolarize the cytoplasmic membrane potential of target cell membrane, whereas we observed significant membrane depolarization for TPA. In addition, while TPA caused rapid and large dye leakage from negatively charged model vesicles, TWF showed very little membrane-disrupting activity. Interestingly, we have looked for a synergism among the three peptides against E. coli, supporting that they are working with different modes of action. Collectively, our results suggest that TPA disrupts the ion gradients across the membrane, causing depolarization and a loss of microbial viability. By contrast, TWF more likely translocates across the cytoplasmic membrane without depolarization and then acts against one or more intracellular targets. Tritrpticin exhibits intermediate properties and appears to act via membrane depolarization coupled to secondary intracellular targeting.  相似文献   

5.
Y Endo  T Tani    M Kodama 《Applied microbiology》1987,53(9):2050-2055
Tertiary amine was covalently bonded to a polystyrene fiber and examined for antibacterial activity. The tertiary amine covalently bonded to a polystyrene fiber (TAF) showed a high antimicrobial activity against Escherichia coli. TAF exhibited a stronger antibacterial activity against gram-negative bacteria (E. coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella typhimurium, and Serratia marcescens) than against gram-positive bacteria (Staphylococcus aureus and Streptococcus faecalis) or Candida albicans. This activity against E. coli was accentuated by 0.1% deoxycholate or 10 mg of actinomycin D per ml, to which E. coli is normally not susceptible. This implies that TAF causes an increase of the bacterial outer membrane permeability. On the other hand, the antimicrobial activity was inhibited by adding Mg2+ or by lowering the pH. This suggest an electrostatic interaction between the bacterial cell wall and TAF. Scanning electron microscopy showed that E. coli cells were initially attached to TAF, with many projections on the cell surface, but then were apparently lysed after contact for 4 h. Taken together, these results imply that bacteria initially interact with TAF by an electrostatic force between the anionic bacterial outer membrane and the cationic tertiary amine residues of TAF and that longer contact with TAF damages the bacterial outer membrane structure and increases its permeability.  相似文献   

6.
Abstract Antimicrobial RNases are small cationic proteins belonging to the vertebrate RNase A superfamily and endowed with a wide range of antipathogen activities. Vertebrate RNases, while sharing the active site architecture, are found to display a variety of noncatalytical biological properties, providing an excellent example of multitask proteins. The antibacterial activity of distant related RNases suggested that the family evolved from an ancestral host-defence function. The review provides a structural insight into antimicrobial RNases, taking as a reference the human RNase 3, also named eosinophil cationic protein (ECP). A particular high binding affinity against bacterial wall structures mediates the protein action. In particular, the interaction with the lipopolysaccharides at the Gram-negative outer membrane correlates with the protein antimicrobial and specific cell agglutinating activity. Although a direct mechanical action at the bacteria wall seems to be sufficient to trigger bacterial death, a potential intracellular target cannot be discarded. Indeed, the cationic clusters at the protein surface may serve both to interact with nucleic acids and cell surface heterosaccharides. Sequence determinants for ECP activity were screened by prediction tools, proteolysis and peptide synthesis. Docking results are complementing the structural analysis to delineate the protein anchoring sites for anionic targets of biological significance.  相似文献   

7.
Ceragenins are cationic bile salt derivatives having antimicrobial activity. The interactions of several ceragenins with phospholipid bilayers were tested in different systems. The ceragenins are capable of forming specific associations with several phospholipid species that may be involved with their antimicrobial action. Their antimicrobial activity is lower in bacteria that have a high content of phosphatidylethanolamine. Gram negative bacteria with a high content of phosphatidylethanolamine exhibit sensitivity to different ceragenins that corresponds to the extent of interaction of these compounds with phospholipids, including the ability of different ceragenins to induce leakage of aqueous contents from phosphatidylethanolamine-rich liposomes. A second class of bacteria having cell membranes composed largely of anionic lipids and having a low content of phosphatidylethanolamine are very sensitive to the action of the ceragenins but they exhibit similar minimal inhibitory concentrations with most of the ceragenins and for different strains of bacteria. Although Gram negative bacteria generally have a high content of phosphatidylethanolamine, there are a few exceptions. In addition, a mutant strain of Escherichia coli has been made that is essentially devoid of phophatidylethanolamine, although 80% of the lipid of the wild-type strain is phosphatidylethanolamine. Furthermore, certain Gram positive bacteria are also exceptions in that they can have a high content of phosphatidylethanolamine. We find that the antimicrobial action of the ceragenins correlates better with the content of phosphatidylethanolamine in the bacterial membrane than whether or not the bacteria has an outer membrane. Thus, the bacterial lipid composition can be an important factor in determining the sensitivity of bacteria to antimicrobial agents.  相似文献   

8.
All bacteria contain proteins in which their amino-terminal cysteine residue is modified with N-acyl S-diacylglycerol functions, and peptides and proteins bearing this modification are immunomodulatory. The major outer membrane lipoprotein of Escherichia coli, the Braun lipoprotein (BLP), is the prototypical triacylated cysteinyl-modified protein. We find it is as active as LPS in stimulating human endothelial cells to an inflammatory phenotype, and a BLP-negative mutant of E. coli was less inflammatory than its parental strain. While the lipid modification was essential, the lipidated protein was more potent than a lipid-modified peptide. BLP associates with CD14, but this interaction, unlike that with LPS, was not required to elicit endothelial cell activation. BLP stimulated endothelial cell E-selectin surface expression, IL-6 secretion, and up-regulation of the same battery of cytokine mRNAs induced by LPS. Quantitative microarray analysis of 4400 genes showed the same 30 genes were induced by BLP and LPS, and that there was near complete concordance in the level of gene induction. We conclude that the lipid modification of at least one abundant Gram-negative protein is essential for endotoxic activity, but that the protein component also influences activity. The equivalent potency of BLP and LPS, and their complete concordance in the nature and extent of endothelial cell activation show that E. coli endotoxic activity is not due to just LPS. The major outer membrane protein of E. coli is a fully active endotoxic agonist for endothelial cells.  相似文献   

9.
The stimulation of both THP-1 and U937 human-derived cells by Salmonella lipid A preparations from various strains, as assessed by TNF-alpha induction and NF-kappaB activation, was found to be very low (almost inactive) compared with Escherichia coli lipid A, but all of the lipid As exerted strong activity on mouse cells and on Limulus gelation activity. Experiments using chemically synthesized E. coli-type hexaacylated lipid A (506) and Salmonella-type heptaacylated lipid A (516) yielded clearer results. Both lipid A preparations strongly induced TNF-alpha release and activated NF-kappaB in mouse peritoneal macrophages and mouse macrophage-like cell line J774-1 and induced Limulus gelation activity, although the activity of the latter was slightly weaker than that of the former. However, 516 was completely inactive on both THP-1 and U937 cells in terms of both induction of TNF-alpha and NF-kappaB activation, whereas 506 displayed strong activity on both cells, the same as natural E. coli LPS. In contrast to the action of the lipid A preparations, all the Salmonella LPSs also exhibited full activity on human cells. However, the polysaccharide portion of the LPS neither exhibited TNF-alpha induction activity on the cells when administered alone or together with lipid A nor inhibited the activity of the LPS. These results suggest that the mechanism of activation by LPS or the recognition of lipid A structure by human and mouse cells may differ. In addition, both 516 and lipid A from Salmonella were found to antagonize the 506 and E. coli LPS action that induced TNF-alpha release and NF-kappaB activation in THP-1 cells.  相似文献   

10.
A major problem in the development of vaccines against Gram-negative bacteria is the endotoxic -activity of lipopolysaccharide (LPS), which is determined by its lipid A moiety. Nevertheless, LPS would be an interesting vaccine component because of its immune-stimulating properties. In the present study, we have changed the fatty acid composition of Neisseria meningitidis LPS by replacing the lpxA gene of strain H44/76 with the Escherichia coli or Pseudomonas aeruginosa homologue. The majority of the O-linked 3-OH C12 in N. meningitidis lipid A was replaced by 3-OH C14 (strain HA01E) and 3-OH C10 (strain HA25P) respectively. Both strains, but most notably strain HA01E, had reduced amounts of LPS compared with the wild-type strain. In addition, growth was severely impaired for HA01E. The major outer membrane proteins were expressed normally. Outer membrane complexes of both strains normalized on their LPS content showed a 10-fold reduction in their ability to induce tumour necrosis factor (TNF)-alpha. Immunogenicity studies in BALB/c mice revealed that the adjuvant activity of the LPS was not affected. Thus, the replacement of the O-linked fatty acids in meningococcal lipid A results in immunogenic outer membranes with reduced endotoxic activity, more suitable for use in outer membrane vesicle vaccines.  相似文献   

11.
Lipopolysaccharides (LPSs) are prominent structural components of the outer membranes of gram-negative bacteria. In Rhizobium spp. LPS functions as a determinant of the nitrogen-fixing symbiosis with legumes. LPS is anchored to the outer surface of the outer membrane by the lipid A moiety, the principal lipid component of the outer bacterial surface. Several notable structural differences exist between the lipid A of Escherichia coli and that of Rhizobium leguminosarum, suggesting that diverse biosynthetic pathways may also exist. These differences include the lack of phosphate groups and the presence of a 4'-linked GalA residue in the latter. However, we now show that UDP-GlcNAc plays a key role in the biosynthesis of lipid A in R. leguminosarum, as it does in E. coli. 32P-labeled monosaccharide and disaccharide lipid A intermediates from E. coli were isolated and tested as substrates in cell extracts of R. leguminosarum biovars phaseoli and viciae. Six enzymes that catalyze the early steps of E. coli lipid A biosynthesis were also present in extracts of R. leguminosarum. Our results show that all the enzymes of the pathway leading to the formation of the intermediate 3-deoxy-D-manno-2-octulosonic acid (Kdo2)-lipid IVA are functional in both R. leguminosarum biovars. These enzymes include (i) UDP-GlcNAc 3-O-acyltransferase; (ii) UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase; (iii) UDP-3-O-(R-3-hydroxymyristoyl)-GlcN N-acyltransferase; (iv) disaccharide synthase; (v) 4'-kinase; and (vi) Kdo transferase. Our data suggest that the early steps in lipid A biosynthesis are conserved and that the divergence leading to rhizobial lipid A may occur at a later stage in the pathway, presumably after the attachment of the Kdo residues.  相似文献   

12.
Mammalian peptidoglycan recognition proteins (PGRPs), similar to antimicrobial lectins, bind the bacterial cell wall and kill bacteria through an unknown mechanism. We show that PGRPs enter the Gram-positive cell wall at the site of daughter cell separation during cell division. In Bacillus subtilis, PGRPs activate the CssR-CssS two-component system that detects and disposes of misfolded proteins that are usually exported out of bacterial cells. This activation results in membrane depolarization, cessation of intracellular peptidoglycan, protein, RNA and DNA synthesis, and production of hydroxyl radicals, which are responsible for bacterial death. PGRPs also bind the outer membrane of Escherichia coli and activate the functionally homologous CpxA-CpxR two-component system, which kills the bacteria. We exclude other potential bactericidal mechanisms, including inhibition of extracellular peptidoglycan synthesis, hydrolysis of peptidoglycan and membrane permeabilization. Thus, we reveal a previously unknown mechanism by which innate immunity proteins that bind the cell wall or outer membrane exploit the bacterial stress defense response to kill bacteria.  相似文献   

13.
Antimicrobial proteins and peptides (AMPs) are important effectors of the innate immune system that play a vital role in the prevention of infections. Recent advances have highlighted the similarity between AMPs and amyloid proteins. Using the Eosinophil Cationic Protein as a model, we have rationalized the structure-activity relationships between amyloid aggregation and antimicrobial activity. Our results show how protein aggregation can induce bacteria agglutination and cell death. Using confocal and total internal reflection fluorescence microscopy we have tracked the formation in situ of protein amyloid-like aggregates at the bacteria surface and on membrane models. In both cases, fibrillar aggregates able to bind to amyloid diagnostic dyes were detected. Additionally, a single point mutation (Ile13 to Ala) can suppress the protein amyloid behavior, abolishing the agglutinating activity and impairing the antimicrobial action. The mutant is also defective in triggering both leakage and lipid vesicle aggregation. We conclude that ECP aggregation at the bacterial surface is essential for its cytotoxicity. Hence, we propose here a new prospective biological function for amyloid-like aggregates with potential biological relevance.  相似文献   

14.
We have studied how membrane interactions of two synthetic cationic antimicrobial peptides with alternating alpha- and beta-amino acid residues ("alpha/beta-peptides") impact toxicity to different prokaryotes. Electron microscopic examination of thin sections of Escherichia coli and of Bacillus subtilis exposed to these two alpha/beta-peptides reveals different structural changes in the membranes of these bacteria. These two peptides also have very different effects on the morphology of liposomes composed of phosphatidylethanolamine and phosphatidylglycerol in a 2:1 molar ratio. Freeze fracture electron microscopy indicates that with this lipid mixture, alpha/beta-peptide I induces the formation of a sponge phase. 31P NMR and X-ray diffraction are consistent with this conclusion. In contrast, with alpha/beta-peptide II and this same lipid mixture, a lamellar phase is maintained, but with a drastically reduced d-spacing. alpha/beta-Peptide II is more lytic to liposomes composed of these lipids than is I. These findings are consistent with the greater toxicity of alpha/beta-peptide II, relative to alpha/beta-peptide I, to E. coli, a bacterium having a high content of phosphatidylethanolamine. In contrast, both alpha/beta-peptides display similar toxicity toward B. subtilis, in accord with the greater anionic lipid composition in its membrane. This work shows that variations in the selectivity of these peptidic antimicrobial peptides toward different strains of bacteria can be partly determined by the lipid composition of the bacterial cell membrane.  相似文献   

15.
M Wu  E Maier  R Benz  R E Hancock 《Biochemistry》1999,38(22):7235-7242
Antimicrobial cationic peptides are prevalent throughout nature as part of the intrinsic defenses of most organisms, and have been proposed as a blueprint for the design of novel antimicrobial agents. They are known to interact with membranes, and it has been frequently proposed that this represents their antibacterial target. To see if this was a general mechanism of action, we studied the interaction, with model membranes and the cytoplasmic membrane of Escherichia coli, of 12 peptides representing all 4 structural classes of antimicrobial peptides. Planar lipid bilayer studies indicated that there was considerable variance in the interactions of the peptides with model phospholipid membranes, but generally both high concentrations of peptide and high transmembrane voltages (usually -180 mV) were required to observe conductance events (channels). The channels observed for most peptides varied widely in magnitude and duration. An assay was developed to measure the interaction with the Escherichia coli cytoplasmic membrane employing the membrane potential sensitive dye 3,5-dipropylthiacarbocyanine in the outer membrane barrier-defective E. coli strain DC2. It was demonstrated that individual peptides varied widely in their ability to depolarize the cytoplasmic membrane potential of E. coli, with certain peptides such as the loop peptide bactenecin and the alpha-helical peptide CP26 being unable to cause depolarization at the minimal inhibitory concentration (MIC), and others like gramicidin S causing maximal depolarization below the MIC. We discuss the mechanism of interaction with the cytoplasmic membrane in terms of the model of Matsuzaki et al. [(1998) Biochemistry 37, 15144-15153] and the possibility that the cytoplasmic membrane is not the target for some or even most cationic antimicrobial peptides.  相似文献   

16.
The cathelicidin-derived antimicrobial tritrpticin could be classified as either Trp-rich or Pro/Arg-rich peptide. We recently found that the sequence modification of tritrpticin focused on Trp and Pro residues led to considerable change in structure and antimicrobial potency and selectivity, but their mechanisms of microbial killing action were still unclear. Here, to better understand the bactericidal mechanisms of tritrpticin and its two analogs, TPA and TWF, we studied their effect on the viability of Gram-positive S. aureus and Gram-negative E. coli in relation to their membrane depolarization. Although TWF more effectively inhibited growth of S. aureus and E. coli than TPA, only a 30 min exposure to TPA was sufficient to kill both bacteria and TWF required a lag period of about 3-6 h for bactericidal activity. Their different bactericidal kinetics was associated with membrane permeabilization, i.e., TWF showed negligible ability to depolarize the cytoplasmic membrane potential of target cell membrane, whereas we observed significant membrane depolarization for TPA. In addition, while TPA caused rapid and large dye leakage from negatively charged model vesicles, TWF showed very little membrane-disrupting activity. Interestingly, we have looked for a synergism among the three peptides against E. coli, supporting that they are working with different modes of action. Collectively, our results suggest that TPA disrupts the ion gradients across the membrane, causing depolarization and a loss of microbial viability. By contrast, TWF more likely translocates across the cytoplasmic membrane without depolarization and then acts against one or more intracellular targets. Tritrpticin exhibits intermediate properties and appears to act via membrane depolarization coupled to secondary intracellular targeting.  相似文献   

17.
《Biophysical journal》2020,118(1):138-150
Multidrug-resistant Gram-negative bacteria have increased the prevalence of a variety of serious diseases in modern times. Polymyxins are used as the last-line therapeutic options for the treatment of infections. However, the mechanism of action of polymyxins remains in dispute. In this work, we used a coarse-grained molecular dynamics simulation to investigate the mechanism of the cationic antimicrobial peptide polymyxin B (PmB) interacting with both the inner and outer membrane models of bacteria. Our results show that the binding of PmB disturbs the outer membrane by displacing the counterions, decreasing the orientation order of the lipopolysaccharide tail, and creating more lipopolysaccharide packing defects. Upon binding onto the inner membrane, in contrast to the traditional killing mechanism that antimicrobial peptides usually use to induce holes in the membrane, PmBs do not permeabilize the inner membrane but stiffen it by filling up the lipid packing defect, increasing the lipid tail order and the membrane bending rigidity as well as restricting the lipid diffusion. PmBs also mediate intermembrane contact and adhesion. These joint effects suggest that PmBs deprive the biological activity of Gram-negative bacteria by sterilizing the cell.  相似文献   

18.
Microbial bioemulsifiers are secreted by many bacteria and are important for bacterial interactions with hydrophobic substrates or nutrients and for a variety of biotechnological applications. We have recently shown that the OmpA protein in several members of the Acinetobacter family has emulsifying properties. These properties of OmpA depend on the amino acid composition of four putative extra-membrane loops, which in various strains of Acinetobacter, but not in E. coli, are highly hydrophobic. As many Acinetobacter strains can utilize hydrophobic carbon sources, such as oil, the emulsifying activity of their OmpA may be important for the utilization and uptake of hydrocarbons. We assumed that if outer membrane proteins with emulsifying activity are physiologically important, they may exist in additional oil degrading bacteria. In order to identify such proteins, it was necessary to obtain bioinformatics-based predictions for hydrophobic extra-membrane loops. Here we describe a method for using protein sequence data for predicting the hydrophobic properties of the extra-membrane loops of outer membrane proteins. The feasibility of this method is demonstrated by its use to identify a new microbial bioemulsifier - OprG - an outer membrane protein of the oil degrading Pseudomonas putida KT2440.  相似文献   

19.
Recently, we have found that partially unfolded lysozyme exerts broad spectrum antimicrobial action in vitro against Gram-negative and Gram-positive bacteria independent of its catalytic activity. In parallel, an internal peptide (residues 98-112) of hen egg white lysozyme, obtained after digestion with clostripain, possessed broad spectrum antimicrobial action in vitro. This internal peptide is part of a helix-loop-helix domain (87-114 sequence of hen lysozyme) located at the upper lip of the active site cleft of lysozyme. The helix-loop-helix (HLH) structures are known motifs commonly found in membrane-active and DNA-binding proteins. To evaluate the contribution of the HLH peptide to the antimicrobial properties of lysozyme, the HLH sequence and its secondary structure derivatives of chicken and human lysozyme were synthesized and tested for antimicrobial activity against several bacterial strains. We found that the full HLH peptide of both chicken and human lysozymes was potently microbicidal against both Gram-positive and Gram-negative bacteria and the fungus Candida albicans. The N-terminal helix of HLH was specifically bactericidal to Gram-positive bacteria, whereas the C-terminal helix was bactericidal to all tested strains. Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its C-terminal helix domain kill Gram-negative bacteria by crossing the outer membrane via self-promoted uptake and causing damage to the inner membrane through channel formation. The results are discussed in terms of proposed mechanisms for the catalytically independent antimicrobial activity of lysozyme that offer a new strategy for the design of potential antimicrobial drugs in the treatment of infectious diseases.  相似文献   

20.
The outer membranes of several strains of Escherichia coli, other enteric bacteria, and a variety of nonenteric gram-negative bacteria all contain a major heat-modifiable protein similar to the OmpA protein of E. coli K-12. The heat-modifiable proteins from these bacteria resemble the K-12 protein in molecular weight, in preferential release from the outer membrane by sodium dodecyl sulfate in the presence of Mg2+, and in characteristic cleavage by proteases to yield a smaller fragment which remains membrane bound. Antiserum directed against the K-12 protein precipitated the heat-modifiable protein from all strains of Enterobacteriaceae, and chemical comparison by isoelectric focusing, cyanogen bromide cleavage profiles, and proteolytic peptide analysis indicated that the proteins from the various enteric bacteria were nearly identical in primary structure. The heat-modifiable proteins from bacteria phylogenically distant from E. coli shared many of the properties of the E. coli protein but were chemically distinct. Thus, it appears that the structure (and, presumably, the function) of the heat-modifiable protein of gram-negative bacteria is strongly conserved during evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号