首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P-glycoprotein (P-gp) is believed to function as an ATP-dependent efflux pump for natural product anti-cancer drugs in multidrug-resistant (MDR) tumor cells and in certain normal tissues. P-gp has been localized to the apical plasma membrane of the bile canaliculus where it has been shown to transport [3H]daunomycin. In this study, we investigated whether alterations in membrane lipid fluidity of canalicular membrane vesicles (CMV) could modulate the P-gp-mediated accumulation of [3H]daunomycin and [3H]vinblastine. Accumulation of both cytotoxic agents was stimulated by ATP, exhibited temperature dependence and osmotic sensitivity, and followed Michaelis-Menten kinetics. Alterations in CMV lipid fluidity were induced by the known fluidizers, 2-(2-methoxyethoxy)ethyl 8-(cis-2-n-octylcyclopropyl)octanoate (A2C) and benzyl alcohol, and were assessed by fluorescence polarization techniques using the fluorescent probe, 1,6-diphenyl-1,3,5-hexatriene (DPH). Both A2C (2.5-5.0 microM) and benzyl alcohol (10-20 mM) produced a dose-dependent increase in CMV lipid fluidity. Moreover, both fluidizers, at the above doses, significantly inhibited (p < 0.05) the ATP-dependent accumulation of [3H]daunomycin. [3H]Vinblastine accumulation was also inhibited by A2C (p < 0.05). Lower doses of A2C (0.6 microM) and benzyl alcohol (1 mM) failed to influence either lipid fluidity or P-gp-mediated drug accumulation. Kinetic analysis revealed that A2C (5.0 microM) noncompetitively inhibited [3H]daunomycin accumulation and uncompetitively inhibited [3H]vinblastine accumulation with apparent Ki values of approximately 1.5 and approximately 1.2 microM, respectively. Verapamil competitively inhibited P-gp-mediated accumulation of [3H]daunomycin but failed to alter the fluidity of CMV. Taken together, the present results demonstrate that while increases in membrane fluidity of CMV are not necessarily required to inhibit P-gp-mediated drug accumulation, they can inhibit these processes, at least in CMV. Alterations in the physical state of CMV, therefore, appear to be at least one important modulator of P-gp function.  相似文献   

2.
Effect of thiazolidinediones on bile acid transport in rat liver   总被引:2,自引:0,他引:2  
Snow KL  Moseley RH 《Life sciences》2007,80(8):732-740
The thiazolidinedione derivatives, troglitazone, rosiglitazone, and pioglitazone, are novel insulin-sensitizing drugs that are useful in the treatment of type 2 diabetes. However, hepatotoxicity associated with troglitazone led to its withdrawal from the market in March 2000. In view of case reports of hepatotoxicity from rosiglitazone and pioglitazone, it is unclear whether thiazolidinediones as a class are associated with hepatotoxicity. Although the mechanism of troglitazone-associated hepatotoxicity has not been elucidated, troglitazone and its major metabolite, troglitazone sulfate, competitively inhibit adenosine triphosphate (ATP)-dependent taurocholate transport in isolated rat canalicular liver plasma membrane vesicles mediated by the canalicular bile salt export pump (Bsep). These results suggest that cholestasis may be a factor in troglitazone-associated hepatotoxicity. To determine whether this effect is 1) limited to canalicular bile acid transport and 2) is specific to troglitazone, the effect of troglitazone, rosiglitazone, and ciglitazone on bile acid transport was examined in rat basolateral (blLPM) and canalicular (cLPM) liver plasma membrane vesicles. In cLPM vesicles, troglitazone, rosiglitazone, and ciglitazone (100 microM) all significantly inhibited ATP-dependent taurocholate transport. In blLPM vesicles, these three thiazolidinediones also significantly inhibited Na(+)-dependent taurocholate transport. Inhibition of bile acid transport was concentration dependent and competitive in both cLPM and blLPM vesicles. In conclusion, these findings are consistent with a class effect by thiazolidinediones on hepatic bile acid transport. If hepatotoxicity is associated with this effect, then hepatotoxicity is not limited to troglitazone. Alternatively, if hepatotoxicity is limited to troglitazone, other mechanisms are responsible for its reported hepatotoxicity.  相似文献   

3.
Inherent or acquired resistance of tumor cells to cytotoxic drugs represents a major limitation to the successful chemotherapeutic treatment of cancer. During the past three decades dramatic progress has been made in the understanding of the molecular basis of this phenomenon. Analyses of drug-selected tumor cells which exhibit simultaneous resistance to structurally unrelated anti-cancer drugs have led to the discovery of the human MDR1 gene product, P-glycoprotein, as one of the mechanisms responsible for multidrug resistance. Overexpression of this 170 kDa N-glycosylated plasma membrane protein in mammalian cells has been associated with ATP-dependent reduced drug accumulation, suggesting that P-glycoprotein may act as an energy-dependent drug efflux pump. P-glycoprotein consists of two highly homologous halves each of which contains a transmembrane domain and an ATP binding fold. This overall architecture is characteristic for members of the ATP-binding cassette or ABC superfamily of transporters. Cell biological, molecular genetic and biochemical approaches have been used for structure-function studies of P-glycoprotein and analysis of its mechanism of action. This review summarizes the current status of knowledge on the domain organization, topology and higher order structure of P-glycoprotein, the location of drug- and ATP binding sites within P-glycoprotein, its ATPase and drug transport activities, its possible functions as an ion channel, ATP channel and lipid transporter, its potential role in cholesterol biosynthesis, and the effects of phosphorylation on P-glycoprotein activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Biliary secretion of bile salts in mammals is mediated in part by the liver-specific ATP-dependent canalicular membrane protein Bsep/Spgp, a member of the ATP-binding cassette superfamily. We examined whether a similar transport activity exists in the liver of the evolutionarily primitive marine fish Raja erinacea, the little skate, which synthesizes mainly sulfated bile alcohols rather than bile salts. Western blot analysis of skate liver plasma membranes using antiserum raised against rat liver Bsep/Spgp demonstrated a dominant protein band with an apparent molecular mass of 210 kDa, a size larger than that in rat liver canalicular membranes, approximately 160 kDa. Immunofluorescent localization with anti-Bsep/Spgp in isolated, polarized skate hepatocyte clusters revealed positive staining of the bile canaliculi, consistent with its selective apical localization in mammalian liver. Functional characterization of putative ATP-dependent canalicular bile salt transport activity was assessed in skate liver plasma membrane vesicles, with [(3)H]taurocholate as the substrate. [(3)H]taurocholate uptake into the vesicles was mediated by ATP-dependent and -independent mechanisms. The ATP-dependent component was saturable, with a Michaelis-Menten constant (K(m)) for taurocholate of 40+/-7 microM and a K(m) for ATP of 0.6+/-0.1 mM, and was competitively inhibited by scymnol sulfate (inhibition constant of 23 microM), the major bile salt in skate bile. ATP-dependent uptake of taurocholate into vesicles was inhibited by known substrates and inhibitors of Bsep/Spgp, including other bile salts and bile salt derivatives, but not by inhibitors of the multidrug resistance protein-1 or the canalicular multidrug resistance-associated protein, indicating a distinct transport mechanism. These findings provide functional and structural evidence for a Bsep/Spgp-like protein in the canalicular membrane of the skate liver. This transporter is expressed early in vertebrate evolution and transports both bile salts and bile alcohols.  相似文献   

5.
Direct photoaffinity labeling of liver plasma membrane subfractions enriched in sinusoidal and canalicular membranes using [35S]adenosine 5'-O-(thiotriphosphate) ([35S]ATP gamma S) allows the identification of ATP-binding proteins in these domains. Comparative photoaffinity labeling with [35S]ATP gamma S and with the photolabile bile salt derivative (7,7-azo-3 alpha, 12 alpha-dihydroxy-5 beta-[3 beta-3H]-cholan-24-oyl-2'- aminoethanesulfonate followed by immunoprecipitation with a monoclonal antibody (Be 9.2) revealed the identity of the ATP-binding and the bile salt-binding canalicular membrane glycoprotein with the apparent Mr of 110,000 (gp110). The isoelectric point of this glycoprotein was 3.7. Transport of bile salt was studied in vesicles enriched in canalicular and sinusoidal liver membranes. Incubation of canalicular membrane vesicles with [3H] taurocholate in the presence of ATP resulted in an uptake of the bile salt into the vesicles which was sensitive to vanadate. ATP-dependent taurocholate transport was also observed in membrane vesicles from mutant rats deficient in the ATP-dependent transport of cysteinyl leukotrienes and related amphiphilic anions. Substrates of the P-glycoprotein (gp170), such as verapamil and doxorubicin, did not interfere with the ATP-dependent transport of taurocholate. Reconstitution of purified gp110 into liposomes resulted in an ATP-dependent uptake of [3H]taurocholate. These results demonstrate that gp110 functions as carrier in the ATP-dependent transport of bile salts from the hepatocyte into bile. This export carrier is distinct from hitherto characterized ATP-dependent transport systems.  相似文献   

6.
Three mutants of Lactococcus lactis subsp. lactis MG1363, termed EthR, DauR, and RhoR, were selected for resistance to high concentrations of ethidium bromide, daunomycin, and rhodamine 6G, respectively. These mutants were found to be cross resistant to a number of structurally and functionally unrelated drugs, among which were typical substrates of the mammalian multidrug transporter (P-glycoprotein) such as daunomycin, quinine, actinomycin D, gramicidin D, and rhodamine 6G. The three multidrug-resistant strains showed an increased rate of energy-dependent ethidium and daunomycin efflux compared with that of the wild-type strain. This suggests that resistance to these toxic compounds is at least partly due to active efflux. Efflux of ethidium from the EthR strain could occur against a 37-fold inwardly directed concentration gradient. In all strains, ethidium efflux was inhibited by reserpine, a well-known inhibitor of P-glycoprotein. Ionophores which selectively dissipate the membrane potential or the pH gradient across the membrane inhibited ethidium and daunomycin efflux in the wild-type strain, corresponding with a proton motive force-driven efflux system. The ethidium efflux system in the EthR strain, on the other hand, was inhibited by ortho-vanadate and not upon dissipation of the proton motive force, which suggests the involvement of ATP in the energization of transport. The partial inhibition of ethidium efflux by ortho-vanadate and nigericin in the DauR and RhoR strains suggest that a proton motive force-dependent and an ATP-dependent system are expressed simultaneously. This is the first report of an ATP-dependent transport system in prokaryotes which confers multidrug resistance to the organism.  相似文献   

7.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and beta-mercaptoethanol, with concentrations of 10 mM inhibiting by approximately 40%. DTT's inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [(3)H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

8.
The liver is the major organ which eliminates leukotriene C4 (LTC4) and other cysteinyl leukotrienes from the blood circulation into bile. Transport of LTC4 was studied using inside-out vesicles enriched in canalicular and sinusoidal membranes from rat liver. The incubation of canalicular membrane vesicles with [3H]LTC4 in the presence of ATP resulted in an uptake of LTC4 into vesicles. The initial rate of ATP-stimulated LTC4 uptake was about 40-fold higher in canalicular than in sinusoidal membrane vesicles. When liver plasma membrane vesicles were incubated in the absence of ATP, an apparent transient uptake of LTC4 was observed which was temperature-dependent and not affected by the osmolarity. This indicates that LTC4 was bound to proteins on the surface of plasma membrane vesicles. Two proteins with relative molecular weights of 17,000 and 25,000 were detected by direct photoaffinity labeling as major LTC4-binding proteins. One protein (Mr 25,000) was ascribed to subunit 1 (Ya) of glutathione S-transferase which was associated with the membrane. LTD4, LTE4, N-acetyl-LTE4, and omega-carboxy-N-acetyl-LTE4 were also transported into liver plasma membrane vesicles in an ATP-dependent manner with initial rates relative to LTC4 (1.0) of 0.46, 0.11, 0.35, and 0.22, respectively. Mutual competition between the cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione for uptake indicated that they are transported by a common carrier. Apparent Km values of the transport system for LTC4, LTD4, and N-acetyl-LTE4 were 0.25, 1.5, and 5.2 microM, respectively. The ATP-dependent transport of LTC4 into vesicles was not inhibited by doxorubicin, daunorubicin, or verapamil, or by the monoclonal antibody C219, suggesting that the transport system differs from P-glycoprotein. Liver plasma membrane vesicles prepared from mutant rats deficient in the hepatobiliary excretion of cysteinyl leukotrienes lacked the ATP-dependent transport of cysteinyl leukotrienes and S-(2,4-dinitrophenyl)-glutathione. These results demonstrate that the ATP-dependent carrier system is responsible for the transport of cysteinyl leukotrienes and glutathione S-conjugates from the hepatocytes into bile.  相似文献   

9.
Mammalian Mrp2 and its yeast orthologue, Ycf1p, mediate the ATP-dependent cellular export of a variety of organic anions. Ycf1p also appears to transport the endogenous tripeptide glutathione (GSH), whereas no ATP-dependent GSH transport has been detected in Mrp2-containing mammalian plasma membrane vesicles. Because GSH uptake measurements in isolated membrane vesicles are normally carried out in the presence of 5-10 mM dithiothreitol (DTT) to maintain the tripeptide in the reduced form, the present study examined the effects of DTT and other sulfhydryl-reducing agents on Ycf1p- and Mrp2-mediated transport activity. Uptake of S-dinitrophenyl glutathione (DNP-SG), a prototypic substrate of both proteins, was measured in Ycf1p-containing Saccharomyces cerevisiae vacuolar membrane vesicles and in Mrp2-containing rat liver canalicular plasma membrane vesicles. Uptake was inhibited in both vesicle systems in a concentration-dependent manner by DTT, dithioerythritol, and β-mercaptoethanol, with concentrations of 10 mM inhibiting by ∼40%. DTT’s inhibition of DNP-SG transport was noncompetitive. In contrast, ATP-dependent transport of [3H]taurocholate, a substrate for yeast Bat1p and mammalian Bsep bile acid transporters, was not significantly affected by DTT. DTT also inhibited the ATP-dependent uptake of GSH by Ycf1p. As the DTT concentration in incubation solutions containing rat liver canalicular plasma membrane vesicles was gradually decreased, ATP-dependent GSH transport was now detected. These results demonstrate that Ycf1p and Mrp2 are inhibited by concentrations of reducing agents that are normally employed in studies of GSH transport. When this inhibition was partially relieved, ATP-dependent GSH transport was detected in rat liver canalicular plasma membranes, indicating that both Mrp2 and Ycf1p are able to transport GSH by an ATP-dependent mechanism.  相似文献   

10.
The hepatic transport of the immunosuppressive Cyclosporin A (CyA) was studied using liposomal phospholipid membranes, freshly isolated rat hepatocytes and bile canalicular plasma membrane vesicles from rat liver. The Na(+)-dependent, saturable uptake of the bile acid 3H-taurocholate into isolated rat liver cells was apparently competitively inhibited by CyA. However, the uptake of CyA into the cells was neither saturable, nor temperature-dependent nor Na(+)-dependent, nor could it be inhibited by bile salts or CyA-derivatives, indicating passive diffusion. In steady state depolarization fluorescence studies, CyA caused a concentration-dependent decrease of anisotropy, indicating a membrane fluidizing effect. Ion flux experiments demonstrated that CyA dramatically increases the permeability of Na+ and Ca2+ across phospholipid membranes in a dose- and time-dependent manner, suggesting a iontophoretic activity that might have a direct impact on cellular ion homeostasis and regulation of bile acid uptake. Photoaffinity labeling with a [3H]-labeled photolabile CyA-derivative resulted in the predominant incorporation of radioactivity into a membrane polypeptide with an apparent molecular weight of 160,000 and a minor labeling of polypeptides with molecular weights of 85,000-90,000. In contrast, use of a photolabile bile acid resulted in the labeling of a membrane polypeptide with an apparent molecular weight of 110,000, representing the bile canalicular bile acid carrier. The photoaffinity labeling as well as CyA transport by canalicular membrane vesicles were inhibited by CyA and the p-glycoprotein substrates daunomycin and PSC-833, but not by taurocholate, indicating that CyA is excreted by p-glycoprotein. CyA uptake by bile canalicular membrane vesicles was ATP-dependent and could not be inhibited by taurocholate. CyA caused a decrease in the maximum amount of bile salt accumulated by the vesicles with time. However, initial rates of [3H]-taurocholate uptake within the first 2.5 min remained unchanged at increasing CyA concentrations. In summary, the data indicate that CyA does not directly interact with the hepatic bile acid transport systems. Its cholestatic action may rather be the result of alterations in membrane fluidity, intracellular effects and an interaction with p-glycoprotein.  相似文献   

11.
Using rat heart sarcolemma and liver plasma membrane vesicles, it has been verified that the transport of leukotriene C4 (LTC4) across membranes is an ATP-dependent process; the apparent Km for LTC4 was 150 nM (heart sarcolemma) or 250 nM (liver plasma membrane). S-(2,4-dinitrophenyl)-glutathione (DNP-SG) inhibited LTC4 uptake into the vesicles dose-dependently (I50 = 25 microM for both heart sarcolemma and liver plasma membrane vesicles). Mutual inhibition between LTC4 and DNP-SG in uptake into the vesicles demonstrates that transport of LTC4 is mediated by an ATP-dependent glutathione S-conjugate carrier.  相似文献   

12.
Prevention of nucleoside loss in bile is physiologically desirable because hepatocytes are the main source of nucleosides for animal cells which lack de novo nucleoside biosynthesis. We have demonstrated a Na+ gradient-energized, concentrative nucleoside transport system in canalicular membrane vesicles (CMV) from rat liver by studying [3H]adenosine uptake using a rapid filtration technique. The Na(+)-dependent nucleoside transporter accepts purine, analogues of purine nucleosides and uridine; exhibits high affinity for adenosine (apparent Km, 14 microM); is not inhibited by nitrobenzylthioinosine or dipyridamole, and is present in CMV but not in rat liver sinusoidal membrane vesicles. Adenosine transport in right side-out CMV was substantially greater than with inside-out CMV. CMV also contain abundant ecto-ATPase and ecto-AMPase (5'-nucleotidase). These ectoenzymes were shown to degrade nucleotides into nucleosides which were conserved by the Na(+)-dependent nucleoside transport system.  相似文献   

13.
ATP-dependent trapping of [14C]methylamine was demonstrated in vesicles selectively derived from the sinusoidal plasma membrane of rat hepatocytes; activity was lacking in vesicles prepared from the canalicular domain of the plasma membrane of rat hepatocytes. The proton movement was inhibited by carbonyl cyanide p-trifluoromethoxyphenylhydrazone, strophanthidin, vanadate, amiloride, and absence of sodium. 22Na efflux from sinusoidal membrane vesicles increased inversely to extravesicular pH. The results indicate that the sinusoidal plasma membrane of rat hepatocytes contains a Na+/H+ antiport.  相似文献   

14.
ATP-dependent Ca2+ uptake was measured in vesicles of rat liver cell basolateral plasma membranes. Nucleotide-dependent uptake was specific for ATP and observed at pH 7.0 and 7.4/7.5 but not at pH 8.0. ATP-dependent Ca2+ transport was only observed in the presence of Mg2+. Kinetic analysis of ATP-dependent transport revealed an apparent Km in the submicromolar region. Addition of calmodulin and trifluoperazine had no effect on ATP-dependent uptake. A Ca2+-dependent, phosphorylated intermediate with the apparent molecular weight of 135,000 could be demonstrated in the basolateral plasma membranes. Phosphorylated intermediates with apparent molecular weights of 200,000 and 110,000 were demonstrated in microsomes and appeared to contaminate 'basolateral' membrane protein phosphorylation. The results suggest that a 135,000 molecular weight protein is a Ca2+-ATPase and the enzymatic expression of the liver cell basolateral membrane Ca2+ pump.  相似文献   

15.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca2+-Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 \sgmaelig;M) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 \sgmaelig;M regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca2+-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

16.
Multidrug resistant (MDR) cells overexpress a 170-180 kDa membrane glycoprotein, the P-glycoprotein, which is believed to export drugs in an ATP-dependent manner. Plasma membrane vesicles from the MDR CHRC5 cell line, but not the AuxB1 drug-sensitive parent, showed uptake of [3H]colchicine and [3H]vinblastine that was stimulated by the presence of ATP and an ATP-regenerating system. Steady-state uptake of drugs was achieved by 10 min and was stable for greater than 30 min. Non-hydrolysable ATP analogues were unable to support drug uptake, indicating that ATP hydrolysis is essential for transport. ATP-stimulated drug uptake appeared to result from drug transport into inside-out vesicles, since uptake was osmotically sensitive and could be prevented by detergent permeabilization. Steady-state uptake was half-maximal at 100 microM colchicine and 200 nM vinblastine and was inhibited by a 10-100-fold excess of MDR drugs and chemosensitizers, in the order vinblastine greater than verapamil greater than daunomycin greater than colchicine. In addition to being vanadate-sensitive, drug uptake was inhibited by 10-200 microM concentrations of several sulfhydryl-modifying reagents, suggesting that cysteine residues play an important role in drug transport. Vesicular colchicine was rapidly exchanged by an excess of unlabelled drug, demonstrating that drug association is the net result of opposing colchicine fluxes across the membrane.  相似文献   

17.
Cells displaying the classic multidrug resistant (MDR) phenotype possess a transmembrane protein (p170 or P-glycoprotein) which can actively extrude cytotoxic agents from the cytoplasm. A mathematical model of this drug efflux pump has been developed. Outward transport is modeled as a facilitated diffusion process. Since energy-dependent efflux of cytotoxic agents requires that ATP also bind to p170, the model includes a dynamic calculation for efflux rate which considers Michaelis-Menten kinetics for both the substrate agent and ATP. The final system consists of one partial differential equation (PDE) for the facilitated diffusion of substrate agents out of the cell a 2×2 ordinary differential equation (ODE) system for the dynamic calculation of the ATP-ADP pool, and a dynamic algebraic calculation of the efflux rate given substrate levels at the interior cell membrane interface and ATP levels in the cell. A stability analysis of the ATP-ADP pool distribution and a simplistic closed form solution of the linearized PDE are included. Numerical simulations are also provided.  相似文献   

18.
Multidrug resistance-associated proteins 1 and 2 (Mrp1 and Mrp2) are thought to mediate low-affinity ATP-dependent transport of reduced glutathione (GSH), but there is as yet no direct evidence for this hypothesis. The present study examined whether livers from the little skate (Raja erinacea) express an Mrp2 homologue and whether skate liver membrane vesicles exhibit ATP-dependent GSH transport activity. Antibodies directed against mammalian Mrp2-specific epitopes labeled a 180-kDa protein band in skate liver plasma membranes and stained canaliculi by immunofluorescence, indicating that skate livers express a homologous protein. Functional assays of Mrp transport activity were carried out using (3)H-labeled S-dinitrophenyl-glutathione (DNP-SG). DNP-SG was accumulated in skate liver membrane vesicles by both ATP-dependent and ATP-independent mechanisms. ATP-dependent DNP-SG uptake was of relatively high affinity [Michaelis-Menten constant (K(m)) = 32 +/- 9 microM] and was cis-inhibited by known substrates of Mrp2 and by GSH. Interestingly, ATP-dependent transport of (3)H-labeled S-ethylglutathione and (3)H-labeled GSH was also detected in the vesicles. ATP-dependent GSH transport was mediated by a low-affinity pathway (K(m) = 12 +/- 2 mM) that was cis-inhibited by substrates of the Mrp2 transporter but was not affected by membrane potential or pH gradient uncouplers. These results provide the first direct evidence for ATP-dependent transport of GSH in liver membrane vesicles and support the hypothesis that GSH efflux from mammalian cells is mediated by members of the Mrp family of proteins.  相似文献   

19.
The physiological characterstics of allo-cholic acid (ACA), a typically fetal bile acid that reappears during liver regeneration and carcinogenesis were investigated. [(14)C] Tauro-ACA (TACA) uptake by Chinese hamster ovary cells expressing rat organic anion transporter polypeptide (Oatp)1 or sodium-taurocholate cotransporter polypeptide (Ntcp) was lower than that of [(14)C]taurocholic acid (TCA). Although TACA inhibited ATP-dependent TCA transport across plasma membrane vesicles from Sf9 cells expressing rat or mouse bile salt export pump (Bsep), no ATP-dependent TACA transport was found. In rats, TACA was secreted into bile with no major biotransformation and it had lower clearance and longer half-life than TCA. In mice, TACA bile output was lower (-50%) than that of TCA, whereas TACA induced 9-fold higher bile flow than TCA. Even though the intracellular levels were lower for TACA, translocation into the hepatocyte nucleus was higher for TACA than for TCA; however, rate of DNA synthesis, expression levels of alpha-fetoprotein, albumin, Ntcp, and Bsep, cell viability, and apoptosis in rat hepatocytes were similarly affected by both isomers. In conclusion, TACA partly shares hepatocellular uptake system(s) for TCA. Furthermore, in contrast to other "flat" bile acids, TACA is efficiently secreted into bile via transport system(s) other than Bsep and is highly choleretic, hence its appearance during certain situations may prevent accumulation of cholestatic precursors.  相似文献   

20.
ATP-dependent Ca2+ transport was studied in basolateral membrane vesicles prepared from rat parotid gland slices incubated without or with agents which increase cyclic AMP. Isoproterenol (10(-5) M), forskolin (2 X 10(-6) M) and 8-bromocyclic AMP (2 X 10(-3) M) all increased ATP-dependent 45Ca2+ uptake 1.5- to 3-fold. The effect of isoproterenol was concentration-dependent and blocked by the beta-adrenergic antagonist propranolol. Enhanced uptake did not appear an artifact of vesicle preparation as apparent vesicle sidedness, 45Ca2+ efflux rates, specific activity of marker enzymes and equilibrium Ca2+ content were identical in vesicle preparations from control and 8-bromocyclic AMP-treated slices. Kinetic studies showed the ATP-dependent Ca2+ transport system in vesicles from 8-bromocyclic AMP-treated slices displayed a approximately 50% increase in Vmax and in Km Ca2+, compared to controls. The data suggest that physiological secretory stimuli to rat parotid acinar cells, which involve cyclic AMP, result in a readjustment of the basolateral membrane ATP-dependent Ca2+ pump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号