首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Breast tumor suppressor gene 1 (BRCA1) plays an essential role in maintaining genomic integrity. Here we show that mouse Brca1 is required for DNA-damage repair and crossing-over during spermatogenesis. Male Brca1(Delta11/Delta11)p53(+/-) mice that carried a homozygous deletion of Brca1 exon 11 and a p53 heterozygous mutation had significantly reduced testicular size and no spermatozoa in their seminiferous tubules. During spermatogenesis, homologous chromosomes from the mutant mice synapsed and advanced to the pachytene stage but failed to progress to the diplotene stage. Our analyses revealed that the Brca1 mutation affected cellular localization of several DNA damage-repair proteins. This included prolonged association of gammaH2AX with sites of DNA damage, reduced sex body formation, diminished Rad51 foci and absence of Mlh1 foci in the pachytene stage. Consequently, chromosomes from mutant mice did not form chiasmata, a point that connects exchanging homologous chromosomes. Brca1-mutant spermatocytes also exhibited decreased RNA expression levels of several genes that are involved in DNA-damage repair, including RuvB-like DNA helicase, XPB, p62 and TFIID. Of note, the premature termination of spermatogenesis at the pachytene stage was accompanied by increased apoptosis by both p53-dependent and p53-independent mechanisms. Thus, our study revealed an essential role of Brca1 in DNA-damage repair and crossing-over of homologous chromosomes during spermatogenesis.  相似文献   

3.
Germline mutations of BRCA1 predispose women to breast and ovarian cancers. However, the downstream mediators of BRCA1 function in tumor suppression remain elusive. We found that human BRCA1-associated breast cancers have lower levels of SIRT1 than their normal controls. We further demonstrated that mammary tumors from Brca1 mutant mice have low levels of Sirt1 and high levels of Survivin, which is reversed by induced expression of Brca1. BRCA1 binds to the SIRT1 promoter and increases SIRT1 expression, which in turn inhibits Survivin by changing the epigenetic modification of histone H3. Absence of SIRT1 blocks the regulation of Survivin by BRCA1. Furthermore, we demonstrated that activation of Sirt1 and inhibition of Survivin expression by resveratrol elicit a more profound inhibitory effect on Brca1 mutant cancer cells than on Brca1-wild-type cancer cells both in vitro and in vivo. These findings suggest that resveratrol treatment serves as an excellent strategy for targeted therapy for BRCA1-associated breast cancer.  相似文献   

4.
Although germline mutations in BRCA1 highly predispose women towards breast and ovarian cancer, few substantial improvements in preventing or treating such cancers have been made. Importantly, BRCA1 function is closely associated with DNA damage repair, which is required for genetic stability. Here, we examined the efficacy of radiotherapy, assessing the accumulation of genetic instabilities, in the treatment of BRCA1-associated breast cancer using a Brca1-mutant mouse model. Treatment of Brca1-mutant tumor-engrafted mice with X-rays reduced tumor progression by 27.9% compared with untreated controls. A correlation analysis of irradiation responses and biomarker profiles in tumors at baseline identified differences between responders and non-responders at the protein level (pERα, pCHK2, p53, and EpCAM) and at the SOX2 target expression level. We further demonstrated that combined treatment of Brca1-mutant mammary tumors with irradiation and AZD2281, which inhibits PARP, significantly reduced tumor progression and extended survival. Our findings enhance the understanding of DNA damage and biomarker responses in BRCA1-associated mammary tumors and provide preclinical evidence that radiotherapy with synthetic DNA damage is a potential strategy for the therapeutic management of BRCA1-associated breast cancer.  相似文献   

5.
The BRCA1 tumor suppressor has been implicated in many cellular pathways, but the mechanisms by which it suppresses tumor formation are not fully understood. In vivo BRCA1 forms a heterodimeric complex with the related BARD1 protein, and its enzymatic activity as a ubiquitin ligase is largely dependent upon its interaction with BARD1. To explore the genetic relationship between BRCA1 and BARD1, we have examined the phenotype of Bard1-null mice. These mice become developmentally retarded and die between embryonic day 7.5 (E7.5) and E8.5. Embryonic lethality results from a severe impairment of cell proliferation that is not accompanied by increased apoptosis. In the absence of p53, the developmental defects associated with Bard1 deficiency are partly ameliorated, and the lethality of Bard1; p53-nullizygous mice is delayed until E9.5. This result, together with the increased chromosomal aneuploidy of Bard1 mutant cells, indicates a role for Bard1 in maintaining genomic stability. The striking similarities between the phenotypes of Bard1-null, Brca1-null, and double Bard1; Brca1-null mice provide strong genetic evidence that the developmental functions of Brca1 and Bard1 are mediated by the Brca1/Bard1 heterodimer.  相似文献   

6.
Deng CX 《Mutation research》2001,477(1-2):183-189
Germline mutations in Brca1 are responsible for most cases of familial breast and ovarian cancers, but somatic mutations in the gene are rarely detected in sporadic tumors. Moreover, mouse embryos carrying Brca1-null mutations or homozygous deletions of Brca1 exon 11 of (Brca1Delta11/Delta11) die during gestation due to proliferation defects, raising questions about the mechanisms by which Brca1 represses tumor formation. Molecular analysis reveals that these Brca1 mutations cause hypersensitivity to gamma-irradiation and chromosomal abnormalities in embryos and embryonic fibroblast cells (MEFs). Notably, Brca1Delta11/Delta11 MEFs maintain an intact G1-S checkpoint, but are defective in G2-M checkpoint control. They also contain multiple, functional centrosomes, which lead to unequal chromosome segregation and aneuploidy. These data uncover an essential role for Brca1 in maintaining genetic stability through regulation of centrosome duplication and G2-M checkpoint, and provide a molecular basis for its role in tumorigenesis. Finally, we show that conditional mutation of Brca1 in mammary epithelium causes increased apoptosis and abnormal ductal development. Mammary tumor formation in mutant mice occurs after long latency and is associated with p53 mutations. These results are consistent with a model that Brca1 acts as a caretaker gene, whose absence does not directly initiate tumorigenesis, instead, causes genetic instability, which triggers further alterations and ultimately leads to tumor formation.  相似文献   

7.
BRCA1 is a checkpoint and DNA damage repair gene that secures genome integrity. We have previously shown that mice lacking full-length Brca1 (Brca1(delta11/delta11)) die during embryonic development. Haploid loss of p53 completely rescues embryonic lethality, and adult Brca1(delta11/delta11)p53+/- mice display cancer susceptibility and premature aging. Here, we show that reduced expression and/or the absence of Chk2 allow Brca1(delta11/delta11) mice to escape from embryonic lethality. Compared to Brca1(delta11/delta11)p53+/- mice, lifespan of Brca1(delta11/delta11)Chk2-/- mice was remarkably extended. Analysis of Brca1(delta11/delta11)Chk2-/- mice revealed that p53-dependent apoptosis and growth defect caused by Brca1 deficiency are significantly attenuated in rapidly proliferating organs. However, in later life, Brca1(delta11/delta11)Chk2-/- female mice developed multiple tumors. Furthermore, haploid loss of ATM also rescued Brca1 deficiency-associated embryonic lethality and premature aging. Thus, in response to Brca1 deficiency, the activation of the ATM-Chk2-p53 signaling pathway contributes to the suppression of neoplastic transformation, while leading to compromised organismal homeostasis. Our data highlight how accurate maintenance of genomic integrity is critical for the suppression of both aging and malignancy, and provide a further link between aging and cancer.  相似文献   

8.
In this report we describe the isolation of an isogenic pair of Brca1+/+ and Brca1-/-murine mammary epithelial cells (MMECs). These cells were isolated from Brca1conditional knock out mice which contained loxP sites flanking exon 11 of the Brca1gene (Brca1fl/fl) and then immortalized by infection with HPV-16E6 retrovirus to degradep53 protein. Brca1-/- MMECs were generated by deletion of exon 11 followingtransduction of Brca1fl/fl MMECs with a retroviral vector expressing Cre recombinase.Brca1-deficiency rendered MMECs sensitive to cis-platinum (II) diamine dichloride(CDDP) and methylmethane sulfonate (MMS). The Brca1+/+ and Brca1-/- MMECS is theonly known pair of isogenic mammary epithelial cell lines. The understanding of themechanisms of the CDDP sensitivity of the BRCA1-deficient mammary epithelial cellswould be very important in understanding how BRCA1-deficiency plays out in tissuespecific breast cancer chemotherapy. These studies support the role of BRCA1 in theCDDP-induced and MMS-induced DNA damage and repair by p53-independentpathways.  相似文献   

9.
Epidemiological studies revealed that amount of consumption of soy was inversely related to incidence of breast cancer. Genistein, the predominant isoflavone in soy, has been reported to reduce the incidence of breast cancer in animal models. To investigate whether genistein has a therapeutic effect on BRCA1-associated breast cancer, we treated Brca1 mutant mammary tumor cells with genistein. We showed that genistein treatment depleted the G1 population of cells, which was accompanied by an accumulation of cells at G2. Some genistein-treated cells entered mitosis; however, they exhibited chromosome abnormalities and maintained tetraploidy owing to abortive mitotic exit. A fraction of G2 cells underwent endoreduplication and became polyploid, which was accompanied by increased cell death through activating DNA damage response. Furthermore, our data indicated that Brca1 mutant cells were more sensitive to genistein than some other types of cancer cells, highlighting a good therapeutic potential of genistein for BRCA1-associated breast cancer.  相似文献   

10.
Brca1 is required for DNA repair by homologous recombination (HR) and normal embryonic development. Here we report that deletion of the DNA damage response factor 53BP1 overcomes embryonic lethality in Brca1-nullizygous mice and rescues HR deficiency, as measured by hypersensitivity to polyADP-ribose polymerase (PARP) inhibition. However, Brca1,53BP1 double-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), indicating that BRCA1 has an additional role in DNA crosslink repair that is distinct from HR. Disruption of the nonhomologous end-joining (NHEJ) factor, Ku, promotes DNA repair in Brca1-deficient cells; however deletion of either Ku or 53BP1 exacerbates genomic instability in cells lacking FANCD2, a mediator of the Fanconi anemia pathway for ICL repair. BRCA1 therefore has two separate roles in ICL repair that can be modulated by manipulating NHEJ, whereas FANCD2 provides a key activity that cannot be bypassed by ablation of 53BP1 or Ku.  相似文献   

11.
Germline mutations in BRCA1 result in a significant predisposition for breast and ovarian cancer, with frequent LOH of the remaining wild type allele. Soon after the identification of BRCA1, several different knockout mice were generated to study its biological function in vivo. BRCA1, which is involved in DNA double-strand break (DSB) repair, appeared to be essential for embryonic proliferation and survival during mid-gestation. In contrast to human mutation carriers however, heterozygous mouse mutants did not show spontaneous cancer development. Therefore, a number of conditional mouse models were developed. While tumors of these mice show varying degrees of similarity with their human counterparts, two mouse models develop mammary tumors that lack expression of estrogen and progesterone receptors and ERBB2. This ‘triple negative’ signature is a characteristic feature of BRCA1-associated breast cancers, which can therefore not be treated with endocrine agents or ERBB2-targeting therapeutics. Promising drugs for treating BRCA1-mutated tumors include platinum compounds and PARP inhibitors, which are specifically toxic to DSB repair deficient cells. Although encouraging results have been reported, recent findings indicate that BRCA1/2 deficient ovarian tumors can escape from such targeted treatment by genetic reversion. This resistance mechanism might be studied in future mouse tumor models based on Brca1 truncating mutations mimicking defined human founder mutations.  相似文献   

12.
13.
Although some progresses have been made in breast cancer therapy, effective treatment for BRCA1-deficient breast cancer remains to be a great challenge. It has been demonstrated that the PI3K pathway is inappropriately activated in BRCA1-deficient breast cancers which can be downregulated by microRNA 451 (miR-451). In addition, although PARP1 inhibitors showed relatively positive results in both preclinical and clinical studies, additional efforts to decrease drug resistance as well as reduce systematic toxicity need to be addressed. To this end, by encapsulating the miR-451 mimic and PARP1 inhibitor in the same cationic liposome, we examined the potential of enhancing the response of PARP1 inhibition on BRCA1-deficient breast cancer by regulating the PI3K pathway. Our results revealed that in BRCA1-deficient human breast cancer cell line, PARP1 inhibition resulted in DNA damage with viability decrease, G2/M arrest as well as apoptosis. In contrast, single PI3K inhibition induced G1 arrest along with retarded cell proliferation. However, it was noted that combination of PARP inhibitor and PI3K regulator could exert synergetic function to evidently decrease cell proliferation compared with PARP inhibition alone, which was also confirmed by in vivo antitumor assay using xenograft tumor models. Collectively, our results offer an alternative but superior strategy for the therapy of BRCA1-deficient human breast cancers which may benefit the clinical applications.  相似文献   

14.
A dramatic reduction in the expression of a novel phospholipid hydroperoxide glutathione peroxidase (PHGPx), which incorporates cysteine instead of selenocysteine in the conserved catalytic motif was observed in a microarray analysis using cDNAs amplified from mRNA of Brca1-null mouse embryonic fibroblasts. This non-selenocysteine PHGPx named NPGPx is a cytoplasmic protein with molecular mass of approximately 22 kDa and has little detectable glutathione peroxidase activity in vitro. Ectopic expression of NPGPx in Brca1-null cells that were sensitive to oxidative stress induced by hydrogen peroxide conferred a similar resistance level to that of the wild-type cells, suggesting the importance of this protein in reducing oxidative stress. Expression of NPGPx was found in many tissues, including developing mammary gland. However, the majority of breast cancer cell lines studied (11 of 12) expressed very low or undetectable levels of NPGPx irrespective of BRCA1 status. Re-expression of NPGPx in breast cancer lines, MCF-7 and HCC1937, which have very little or no endogenous NPGPx, induced resistance to eicosapentaenoic acid (an omega-3 type of polyunsaturated fatty acid)-mediated cell death. Conversely, inhibition of the expression of NPGPx by the specific small interfering RNA in HS578T breast cancer cells that originally express substantial amounts of endogenous NPGPx increased their sensitivity to eicosapentaenoic acid-mediated cell death. Thus, NPGPx plays an essential role in breast cancer cells in alleviating oxidative stress generated from polyunsaturated fatty acid metabolism.  相似文献   

15.
BRCA1 is critical for the maintenance of genomic stability, in part through its interaction with the Rad50.Mre11.Nbs1 complex, which occupies a central role in DNA double strand break repair mediated by nonhomologous end joining (NHEJ) and homologous recombination. BRCA1 has been shown to be required for homology-directed recombination repair. However, the role of BRCA1 in NHEJ, a critical pathway for the repair of double strand breaks and genome stability in mammalian cells, remains elusive. Here, we established a pair of mouse embryonic fibroblasts (MEFs) derived from 9.5-day-old embryos with genotypes Brca1(+/+):p53(-/-) or Brca1(-/-):p53(-/-). The Brca1(-/-):p53(-/-) MEFs appear to be extremely sensitive to ionizing radiation. The contribution of BRCA1 in NHEJ was evaluated in these cells using three different assay systems. First, transfection of a linearized plasmid in which expression of the reporter gene required precise end joining indicated that Brca1(-/-) MEFs display a moderate deficiency when compared with Brca1(+/+) cells. Second, using a retrovirus infection assay dependent on NHEJ, a 5-10-fold reduction in retroviral integration efficiency was observed in Brca1(-/-) MEFs when compared with the Brca1(+/+) MEFs. Third, Brca1(-/-) MEFs exhibited a 50-100-fold deficiency in microhomology-mediated end-joining activity of a defined chromosomal DNA double strand break introduced by a rare cutting endonuclease I-SceI. These results provide evidence that Brca1 has an essential role in microhomology-mediated end joining and suggest a novel molecular basis for its caretaker role in the maintenance of genome integrity.  相似文献   

16.
Breast cancer is one of the most frequent malignancies affecting women. The human breast cancer gene 1 (BRCA1) gene is mutated in a distinct proportion of hereditary breast and ovarian cancers. Tumourigenesis in individuals with germline BRCA1 mutations requires somatic inactivation of the remaining wild-type allelle. Although, this evidence supports a role for BRCA1 as a tumour suppressor, the mechanisms through which its loss leads to tumourigenesis remain to be determined. Neither the expression pattern nor the described functions of human BRCA1 and murine breast cancer gene 1 (Brca1) can explain the specific association of mutations in this gene with the development of breast and ovarian cancer. Investigation of the role of Brca1 in normal cell differentiation processes might provide the basis to understand the tissue-restricted properties.  相似文献   

17.
BRCA2 deficiency in mice leads to meiotic impairment and infertility   总被引:6,自引:0,他引:6  
The role of Brca2 in gametogenesis has been obscure because of embryonic lethality of the knockout mice. We generated Brca2-null mice carrying a human BAC with the BRCA2 gene. This construct rescues embryonic lethality and the mice develop normally. However, there is poor expression of the transgene in the gonads and the mice are infertile, allowing examination of the function of BRCA2 in gametogenesis. BRCA2-deficient spermatocytes fail to progress beyond the early prophase I stage of meiosis. Observations on localization of recombination-related and spermatogenic-related proteins suggest that the spermatocytes undergo early steps of recombination (DNA double strand break formation), but fail to complete recombination or initiate spermiogenic development. In contrast to the early meiotic prophase arrest of spermatocytes, some mutant oocytes can progress through meiotic prophase I, albeit with a high frequency of nuclear abnormalities, and can be fertilized and produce embryos. Nonetheless, there is marked depletion of germ cells in adult females. These studies provide evidence for key roles of the BRCA2 protein in mammalian gametogenesis and meiotic success.  相似文献   

18.
19.
Both human and mouse cells express an alternatively spliced variant of BRCA1, BRCA1-Delta11, which lacks exon 11 in its entirety, including putative nuclear localization signals. Consistent with this, BRCA1-Delta11 has been reported to reside in the cytoplasm, a localization that would ostensibly preclude it from playing a role in the nuclear processes in which its full-length counterpart has been implicated. Nevertheless, the finding that murine embryos bearing homozygous deletions of exon 11 survive longer than embryos that are homozygous for Brca1 null alleles suggests that exon 11-deleted isoforms may perform at least some of the functions of Brca1. We have analyzed both the full-length and the exon 11-deleted isoforms of the murine Brca1 protein. Our results demonstrate that full-length murine Brca1 is identical to human BRCA1 with respect to its cell cycle regulation, DNA damage-induced phosphorylation, nuclear localization, and association with Rad51. Surprisingly, we show that endogenous Brca1-Delta11 localizes to discrete nuclear foci indistinguishable from those found in wild-type cells, despite the fact that Brca1-Delta11 lacks previously defined nuclear localization signals. However, we further show that DNA damage-induced phosphorylation of Brca1-Delta11 is significantly reduced compared to full-length Brca1, and that gamma irradiation-induced Rad51 focus formation is impaired in cells in which only Brca1-Delta11 is expressed. Our results suggest that the increased viability of embryos bearing homozygous deletions of exon 11 may be due to expression of Brca1-Delta11 and suggest an explanation for the genomic instability that accompanies the loss of full-length Brca1.  相似文献   

20.
Utilizing the concept of synthetic lethality has provided new opportunities for the development of targeted therapies, by allowing the targeting of loss of function genetic aberrations. In cancer cells with BRCA1 or BRCA2 loss of function, which harbor deficiency of DNA repair by homologous recombination, inhibition of PARP1 enzymatic activity leads to an accumulation of single strand breaks that are converted to double strand breaks but cannot be repaired by homologous recombination. Inhibition of PARP has therefore been advanced as a novel targeted therapy for cancers harboring BRCA1/2 mutations. Preclinical and preliminary clinical evidence, however, suggests a potentially broader scope for PARP inhibitors. Loss of function of various proteins involved in double strand break repair other than BRCA1/2 has been suggested to be synthetically lethal with PARP inhibition. Inactivation of these genes has been reported in a subset of human cancers and might therefore constitute predictive biomarkers for PARP inhibition. Here we discuss the evidence that the clinical use of PARP inhibition may be broader than targeting of cancers in BRCA1/2 germ-line mutation carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号