首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Rahimi F  Hsu K  Endoh Y  Geczy CL 《The FEBS journal》2005,272(11):2811-2827
Growth factors, including fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-beta) regulate fibroblast function, differentiation and proliferation. S100A8 and S100A9 are members of the S100 family of Ca2+-binding proteins and are now accepted as markers of inflammation. They are expressed by keratinocytes and inflammatory cells in human/murine wounds and by appropriately activated macrophages, endothelial cells, epithelial cells and keratinocytes in vitro. In this study, regulation and expression of S100A8 and S100A9 were examined in fibroblasts. Endotoxin (LPS), interferon gamma (IFNgamma), tumour-necrosis factor (TNF) and TGF-beta did not induce the S100A8 gene in murine fibroblasts whereas FGF-2 induced mRNA maximally after 12 h. The FGF-2 response was strongly enhanced and prolonged by heparin. Interleukin-1beta (IL-1beta) alone, or in synergy with FGF-2/heparin strongly induced the gene in 3T3 fibroblasts. S100A9 mRNA was not induced under any condition. Induction of S100A8 in the absence of S100A9 was confirmed in primary fibroblasts. S100A8 mRNA induction by FGF-2 and IL-1beta was partially dependent on the mitogen-activated-protein-kinase pathway and dependent on new protein synthesis. FGF-2-responsive elements were distinct from the IL-1beta-responsive elements in the S100A8 gene promoter. FGF-2-/heparin-induced, but not IL-1beta-induced responses were significantly suppressed by TGF-beta, possibly mediated by decreased mRNA stability. S100A8 in activated fibroblasts was mainly intracytoplasmic. Rat dermal wounds contained numerous S100A8-positive fibroblast-like cells 2 and 4 days post injury; numbers declined by 7 days. Up-regulation of S100A8 by FGF-2/IL-1beta, down-regulation by TGF-beta, and its time-dependent expression in wound fibroblasts suggest a role in fibroblast differentiation at sites of inflammation and repair.  相似文献   

4.
S100A8 and S100A9, two Ca2+-binding proteins of the S100 family, are secreted as a heterodimeric complex (S100A8/A9) from neutrophils and monocytes/macrophages. Serum and synovial fluid levels of S100A8, S100A9, and S100A8/A9 were all higher in patients with rheumatoid arthritis (RA) than in patients with osteoarthritis (OA), with the S100A8/A9 heterodimer being prevalent. By two-color immunofluorescence labeling, S100A8/A9 antigens were found to be expressed mainly by infiltrating CD68+ macrophages in RA synovial tissue (ST). Isolated ST cells from patients with RA spontaneously released larger amounts of S100A8/A9 protein than did the cells from patients with OA. S100A8/A9 complexes, as well as S100A9 homodimers, stimulated the production of proinflammatory cytokines, such as tumor necrosis factor alpha, by purified monocytes and in vitro-differentiated macrophages. S100A8/A9-mediated cytokine production was suppressed significantly by p38 mitogen-activated protein kinase (MAPK) inhibitors and almost completely by nuclear factor kappa B (NF-κB) inhibitors. NF-κB activation was induced in S100A8/A9-stimulated monocytes, but this activity was not inhibited by p38 MAPK inhibitors. These results indicate that the S100A8/A9 heterodimer, secreted extracellularly from activated tissue macrophages, may amplify proinflammatory cytokine responses through activation of NF-κB and p38 MAPK pathways in RA.  相似文献   

5.
S100A8 and S100A9 in human arterial wall. Implications for atherogenesis   总被引:1,自引:0,他引:1  
Atherogenesis is a complex process involving inflammation. S100A8 and S100A9, the Ca2+-binding neutrophil cytosolic proteins, are associated with innate immunity and regulate processes leading to leukocyte adhesion and transmigration. In neutrophils and monocytes the S100A8-S100A9 complex regulates phosphorylation, NADPH-oxidase activity, and fatty acid transport. The proteins have anti-microbial properties, and S100A8 may play a role in oxidant defense in inflammation. Murine S100A8 is regulated by inflammatory mediators and recruits macrophages with a proatherogenic phenotype. S100A9 but not S100A8 was found in macrophages in ApoE-/- murine atherosclerotic lesions, whereas both proteins are expressed in human giant cell arteritis. Here we demonstrate S100A8 and S100A9 protein and mRNA in macrophages, foam cells, and neovessels in human atheroma. Monomeric and complexed forms were detected in plaque extracts. S100A9 was strongly expressed in calcifying areas and the surrounding extracellular matrix. Vascular matrix vesicles contain high levels of Ca2+-binding proteins and phospholipids that regulate calcification. Matrix vesicles characterized by electron microscopy, x-ray microanalysis, nucleoside triphosphate pyrophosphohydrolase assay and cholesterol/phospholipid analysis contained predominantly S100A9. We propose that S100A9 associated with lipid structures in matrix vesicles may influence phospholipid-Ca2+ binding properties to promote dystrophic calcification. S100A8 and S100A9 were more sensitive to hypochlorite oxidation than albumin or low density lipoprotein and immunoaffinity confirmed S100A8-S100A9 complexes; some were resistant to reduction, suggesting that hypochlorite may contribute to protein cross-linking. S100A8 and S100A9 in atherosclerotic plaque and calcifying matrix vesicles may significantly influence redox- and Ca2+-dependent processes during atherogenesis and its chronic complications, particularly dystrophic calcification.  相似文献   

6.
7.
Tumor progression locus 2 (TPL-2) kinase is essential for Toll-like receptor 4 activation of the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) and for upregulation of the inflammatory cytokine tumor necrosis factor (TNF) in lipopolysaccharide (LPS)-stimulated macrophages. LPS activation of ERK requires TPL-2 release from associated NF-kappaB1 p105, which blocks TPL-2 access to its substrate, the ERK kinase MEK. Here we demonstrate that TPL-2 activity is also regulated independently of p105, since LPS stimulation was still needed for TPL-2-dependent activation of ERK in Nfkb1(-/-) macrophages. In wild-type macrophages, LPS induced the rapid phosphorylation of serine (S) 400 in the TPL-2 C-terminal tail. Mutation of this conserved residue to alanine (A) blocked the ability of retrovirally expressed TPL-2 to induce the activation of ERK in LPS-stimulated Nfkb1(-/-) macrophages. TPL-2(S400A) expression also failed to reconstitute LPS activation of ERK and induction of TNF in Map3k8(-/-) macrophages, which lack endogenous TPL-2. Consistently, the S400A mutation was found to block LPS stimulation of TPL-2 MEK kinase activity. Thus, induction of TPL-2 MEK kinase activity by LPS stimulation of macrophages requires TPL-2 phosphorylation on S400, in addition to its release from NF-kappaB1 p105. Oncogenic C-terminal truncations of TPL-2 that remove S400 could promote its transforming potential by eliminating this critical control step.  相似文献   

8.
9.
10.
11.
Toll-like receptors (TLRs) are a family of mammalian homologues of Drosophila Toll and play important roles in host defense. Two of the TLRs, TLR2 and TLR4, mediate the responsiveness to LPS. Here the gene expression of TLR2 and TLR4 was analyzed in mouse macrophages. Mouse splenic macrophages responded to an intraperitoneal injection or in vitro treatment of LPS by increased gene expression of TLR2, but not TLR4. Treatment of a mouse macrophage cell line with LPS, synthetic lipid A, IL-2, IL-15, IL-1beta, IFN-gamma, or TNF-alpha significantly increased TLR2 mRNA expression, whereas TLR4 mRNA expression remained constant. TLR2 mRNA increase in response to synthetic lipid A was severely impaired in splenic macrophages isolated from TLR4-mutated C3H/HeJ mice, suggesting that TLR4 plays an essential role in the process. Specific inhibitors of mitogen-activated protein/extracellular signal-regulated kinase kinase and p38 kinase did not significantly inhibit TLR2 mRNA up-regulation by LPS. In contrast, LPS-mediated TLR2 mRNA induction was abrogated by pretreatment with a high concentration of curcumin, suggesting that NF-kappaB activation may be essential for the process. Taken together, our results indicate that TLR2, in contrast to TLR4, can be induced in macrophages in response to bacterial infections and may accelerate the innate immunity against pathogens.  相似文献   

12.
S100A8 and S100A9, highly expressed by neutrophils, activated macrophages, and microvascular endothelial cells, are secreted during inflammatory processes. Our earlier studies showed S100A8 to be an avid scavenger of oxidants, and, together with its dependence on IL-10 for expression in macrophages, we postulated that this protein has a protective role. S-nitrosylation is an important posttranslational modification that regulates NO transport, cell signaling, and homeostasis. Relatively few proteins are targets of S-nitrosylation. To date, no inflammation-associated proteins with NO-shuttling capacity have been identified. We used HPLC and mass spectrometry to show that S100A8 and S100A9 were readily S-nitrosylated by NO donors. S-nitrosylated S100A8 (S100A8-SNO) was the preferred nitrosylated product. No S-nitrosylation occurred when the single Cys residue in S100A8 was mutated to Ala. S100A8-SNO in human neutrophils treated with NO donors was confirmed by the biotin switch assay. The stable adduct transnitrosylated hemoglobin, indicating a role in NO transport. S100A8-SNO suppressed mast cell activation by compound 48/80; intravital microscopy was used to demonstrate suppression of leukocyte adhesion and extravasation triggered by compound 48/80 in the rat mesenteric microcirculation. Although S100A8 is induced in macrophages by LPS or IFN-gamma, the combination, which activates inducible NO synthase, did not induce S100A8. Thus, the antimicrobial functions of NO generated under these circumstances would not be compromised by S100A8. Our results suggest that S100A8-SNO may regulate leukocyte-endothelial cell interactions in the microcirculation, and suppression of mast cell-mediated inflammation represents an additional anti-inflammatory property for S100A8.  相似文献   

13.
S100A2 level changes are related to human periodontitis   总被引:1,自引:0,他引:1  
Periodontitis is an inflammatory disease, which, when severe, can result in tooth loss, that affects the quality of life. S100A2 was previously identified as a component of gingival crevicular fluid (GCF) via proteome analysis, but it has not been investigated whether S100A2 plays a role in periodontitis. In this study, we analyzed mRNA expression of S100A2 in gingival tissues from normal and classified periodontal disease patients and compared it to that of S100A8 and S100A9. Quantitative real time-PCR revealed that the mRNA expression levels of S100A2, S100A8, and S100A9 were significantly upregulated in gingival tissues with gingivitis, moderate periodontitis, and severe periodontitis compared to normal tissues. In addition, S100A2 proteins in GCF and the conditioned media of lipopolysaccharide (LPS)-treated Jurkat cells were confirmed by ELISA. S100A2 protein levels were significantly higher in GCF in gingivitis and moderate periodontitis groups than in normal groups. S100A2 mRNA expression and protein secretion were also increased by LPS stimulation. Based on the up-regulation of S100A2 in LPS-stimulated immune cells, gingival tissues and GCF from periodontal disease groups, we conclude that S100A2 is a functional component in the immune response during periodontitis and may serve as a potential biomarker for periodontitis.  相似文献   

14.
The major cause of death in cystic fibrosis (CF) is chronic lung disease associated with persistent infection by the bacterium, Pseudomonas aeruginosa. S100A8, an S-100 calcium-binding protein with chemotactic activity, is constitutively expressed in the lungs and serum of CF patients. Levels of S100A8 mRNA were found to be three to four times higher in the lungs of mice carrying the G551D mutation in CF transmembrane conductance regulator compared with littermate controls. Intravenous injection of bacterial LPS induced S100A8 mRNA in the lung to a greater extent in G551D mice than in wild-type littermates. Localization of S100A8 mRNA and protein in the lung indicate that it is a marker for neutrophil accumulation. Bone marrow-derived macrophages from G551D mice were shown to also exhibit hypersensitivity to LPS, measured by induction of TNF-alpha. These results provide evidence that the pathology of CF relates to abnormal regulation of the immune system.  相似文献   

15.
Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.  相似文献   

16.
LPS-binding protein (LBP) binds with high affinity (Kd approximately equal to 10(-9) M) to lipid A of LPS isolated from rough (R)- or smooth (S)-form Gram-negative bacteria as well as to lipid A partial structures such as precursor IVA. To define the role of LBP in regulating responses to LPS we have examined TNF release in rabbit peritoneal exudate macrophages (M phi) stimulated with LPS or with complete or partial lipid A preparations in the presence or absence of LBP. In the presence of LBP, M phi showed increased sensitivity to S- and R-form LPS as well as synthetic lipid A. Compared with LPS or lipid A, up to 1000-fold greater concentrations of partial lipid A structures were required to induce TNF production. However, consistent with our previous observations that these structures bind to LBP, TNF production was increased in the presence of LBP. In contrast, LBP did not enhance or inhibit TNF production produced by heat-killed Staphylococcus aureus, peptidoglycan isolated from S. aureus cell walls, or PMA. Potentiated M phi responsiveness to LPS was observed with as little as 1 ng LBP/ml. Heat-denatured LBP (which no longer binds LPS), BPI (an homologous LPS-binding protein isolated from neutrophils), or other serum proteins were without effect. LBP-treated M phi also showed a more rapid induction of cytokine mRNA (TNF and IL-1 beta), higher steady-state mRNA levels and increased TNF mRNA stability. These data provide additional evidence that LBP is part of a highly specific recognition system controlling M phi responses to LPS. The effects of LBP are lipid A dependent and importantly, extend to LPS preparations isolated from bacteria of R- and S-form phenotype.  相似文献   

17.
Peritoneal macrophages of Lipopolysaccharide (LPS)-refractory C3H/HeJ mouse failed to express the mRNA coding interleukin 1 (IL-1) beta when stimulated by the Ca2+ ionophore A23187 or LPS, though macrophages of LPS-responsive C3H/He responded to these stimulants. These results suggest that the defect of the response in C3H/HeJ macrophages toward LPS stimulation may be related to the Ca2+-dependent signal pathway. The extracts from the C3H/HeJ macrophages showed normal activities of both protein kinase C (PKC) and calmodulin (CaM) in comparison with those from LPS-responsive C3H/He macrophages. However, one species of CaM-binding proteins could hardly be detected by the cross-linking assay with 125I-CaM in C3H/HeJ macrophages stimulated by LPS. These results suggest that the LPS-refractory site in C3H/HeJ macrophages is related to the lack of this CaM-binding protein, and the Ca2+-dependent CaM system may play an important role in the activation of cells by LPS.  相似文献   

18.
19.
20.
IL-1 and TNF-alpha are induced in macrophages by LPS; however, it is unclear whether similar mechanisms control the expression of both genes. Here, we report on the detection of differential regulation of LPS induced IL-1 and TNF-alpha mRNA expression and protein production in murine macrophages based on the use of inhibitors of second messenger pathways. Northern blot analysis was performed with total RNA obtained from murine (C57Bl/6) peritoneal macrophages stimulated in vitro with LPS with or without an inhibitor of protein kinase C (PKc)(1-(5-isoquinolinesulfonyl)-2-methylpiperazine hydrochloride; H7) or an inhibitor of calmodulin (CaM)-dependent kinase (N-(6-amino-hexyl)-5-chloro-1-naphthalene-sulfonamide hydrochloride; W7). Northerns were analyzed with probes for IL-1 alpha and IL-1 beta and TNF-alpha. The expression of the three cytokine mRNA by LPS was inhibited in a dose response manner by H7. In contrast, the expression of IL-1 mRNA, but not TNF-alpha mRNA, was blocked by treatment with W7. Parallel studies monitoring biologic activities of these two cytokines confirm the mRNA data. PKc inhibitors, H7 and retinal, block both IL-1 and TNF-alpha protein production and inhibitors of CaM kinase, W7, N-(6-aminobutyl)-5-chloro-2-naphthalenesulfonamide, calmidazolum, and trifluoperazine dichloride inhibit only IL-1 production. These data suggest that both PKc and CaM kinase dependent pathways are involved in the induction of IL-1 mRNA by LPS. In contrast, TNF-alpha expression appears to be PKc dependent but not CaM kinase dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号