首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antioxidative enzymes in seedlings of Nelumbo nucifera germinated under water   总被引:12,自引:0,他引:12  
Dry seeds of anoxia-tolerant lotus ( Nelumbo nucifera Gaertn= Nelumbium speciosum Willd.) have green shoots with plastids containing chlorophyll, so photosynthesis starts even in seedlings germinated under water, namely hypoxia. Here we investigated antioxidative enzyme changes in N. nucifera seedlings responding to oxygen deficiency. The activity of superoxide dismutase (SOD; EC 1.15.1.1), dehydroascorbate reductase (DHAR; EC 1.8.5.1) and glutathione reductase (GR; EC 1.6.4.2) were lower in seedlings germinated under water (submerged condition) in darkness (SD seedlings) than those found in seedlings germinated in air and darkness (AD seedlings). In contrast, ascorbate peroxidase (APX; EC 1.11.1.11) activity was higher in SD seedlings and the activity of catalase (EC 1.11.1.6) and monodehydroascorbate reductase (MDAR; EC 1.6.5.4) in SD seedlings was nearly the same as in AD seedlings. When SD seedlings were exposed to air, the activity of SOD, DHAR and GR increased, while the activity of catalase and MDAR decreased. Seven electrophoretically distinct SOD isozymes were detectable in N. nucifera . The levels of plastidic Cu,Zn-SODs and Fe-SOD in SD seedlings were comparable with those found in AD seedlings, which may reflect the maintenance of green plastids in SD seedlings as well as in AD seedlings. These results were substantially different from those previously found in rice seedlings germinated under water.  相似文献   

2.
Shibasaka M  Tsuji H 《Plant physiology》1988,86(4):1008-1012
Respiratory activities were compared among rice seedlings germinated in air for 6 days (aerobic seedlings), those germinated under water for 5 days (submerged seedlings), and those grown in air for 1 day after 5 days' submerged germination (air-adapted seedlings). The respiratory activity of the submerged seedlings increased rapidly on transfer to air and reached a plateau at 16 hours in air. Respiration of the submerged seedlings was as sensitive to cyanide as those of aerobic and air-adapted seedlings. 2,4-Dinitrophenol had no effect on the respiration of the submerged seedlings, but stimulated those of the other two types of seedlings. Mitochondria from three types of seedlings did not differ in the ADP/O ratio and the respiratory control ratio (RCR) when succinate was oxidized. However, mitochondria from submerged seedlings (submerged mitochondria) showed poor RCR of about unity when malate was oxidized. Both the rate of succinate oxidation and succinate dehydrogenase activity were low in submerged mitochondria, but increased during air adaptation. Although submerged mitochondria oxidized malate very slowly, this activity increased after exposure to air without any increase in malate dehydrogenase activity. When NAD+ was added to submerged mitochondria, oxidation of malate was restored to the level of the aerobic controls. Addition of NAD+ enhanced the state 3 rate in submerged mitochondria, and RCR recovered to nearly the same value as that of the aerobic controls. Similar effects of NAD+ on 2-oxoglutarate oxidation were observed. All these defects in submerged mitochondria were repaired during air adaptation. These results suggest that NAD+-linked substrate oxidation was low in submerged mitochondria because of NAD+ deficiency, and that the oxidation increased with an increasing level of NAD+ during air adaptation.  相似文献   

3.
The development of the antioxidative system is repressed in rice ( Oryza sativa L. cv. Yamabiko) seedlings germinated under water, but the system is synthesized within 24 h after exposure of the seedlings to air. In order to see whether this regulation of the antioxidative system is reversible, the changes were investigated after submergence of aerobically grown seedlings under water. Low survivability, no morphological change and a slight increase in activity of alcohol dehydrogenase (ADH; EC 1.1.1.1) were observed 24 h after the submergence. Activities of some antioxidative enzymes were decreased, but they were still higher than those in seedlings germinated under water. Superoxide dismutase (SOD; EC 1.15.1.1) in mitochondria, in addition to cytosolic forms of SOD, showed no significant changes, whereas plastidic SOD decreased drastically, which reflected the changes in the development of the corresponding organelles. Thus, the regulation of the antioxidative system was, in part, reversible. In contrast, catalase (EC 1.11.1.6) activity alone was increased by the shift from air to submergence.  相似文献   

4.
Rice (Oryza sativa L.) seedlings were germinated under waterin darkness for 5 or 6 days (submerged seedlings) and then inair for 1 day. Control seedlings were germinated in air, indarkness, for 5 or 6 days (aerobic seedlings). Changes in levelsof antioxidants and in the extent of oxidative damage afterexposure of submerged seedlings to air were studied. -Tocopherol,which inhibits lipid peroxidation, was present in submergedseedlings at about 3 times the level found in aerobically growncontrols, and higher levels than in controls were maintainedfor 24 h after transfer of the seedlings to air. Products oflipid peroxidation were present at a one-third of the levelsfound in aerobic controls, and their levels increased aftertransfer to air. However, these levels remained lower than thosein aerobic controls even after 24 h of contact with air. Carotenoids,which are considered to protect chlorophyllous compounds againstphotooxidation, were not found in submerged seedlings, but theirlevels increased after exposure of the seedlings to air. Lightat an intensity that did not cause photooxidative damage tochlorophyllous compounds in aerobic controls induced photobleachingof these compounds in submerged seedlings during the early stagesof adaptation to air. However, the extent of photobleachingdiminished as adaptation to air proceeded, and photobleachingwas no longer detected after 24 h of adaptation to air. Thus,the system for protection of cellular membranes from lipid peroxidationin the post-hypoxic phase appeared already to exist in submergedseedlings. However, the system for protection of pigments fromphotobleaching was poorly developed in submerged seedlings andwas fully active only after 24 h of adaptation to air. 1Present address: Department of Biology, Faculty of Science,Shizuoka University Shizuoka, 422 Japan 2Present address: Research Institute for Bioresources, OkayamaUniversity, Kurashiki, 710 Japan  相似文献   

5.
Rice (Oryza sativa L. cv. Yamabiko) seedlings germinated underwater for 5 days contained small amounts of heme a and protohemebut no protochlorophyll(ide) [Pchl(ide)]. Levels of hemes andPchl(ide) increased rapidly upon transfer to air. When expressedin terms of fresh weight of tissue, hemes reached the levelsin aerobic controls after 24 h of contact with air, but Pchl(ide)did not. A comparison of the increases during 24-h adaptationto air in levels of heme a and Pchl(ide), which are specificto mitochondria and plastids, respectively, suggested that thedevelopment of mitochondria preceded that of plastids. The rateof synthesis of 5-aminolevulinic acid (ALA) was low in submergedseedlings, as compared to the rate in aerobic controls, butit increased during air adaptation. The sum of the amounts ofheme a, protoheme and Pchl(ide) increased in parallel with theamount of porphyrins, equivalent to the amount of ALA synthesizedduring the experimental period. When submerged seedlings thathad been pretreated with levulinic acid were exposed to air,no Pchl(ide) was formed. In contrast, Pchl(ide) accumulatedunder water when submerged seedlings were fed with ALA. Theseresults indicate that the synthesis of ALA, the limiting stepin the synthesis of Pchl(ide), is repressed under hypoxic conditions. 1 Present address: KRI International, Inc., Kyoto Research Park17, Chudoji Minami-machi, Shimogyo-ku, Kyoto, 600 Japan. 2 Present address: Research Institute for Bioresources, OkayamaUniversity, Kurashiki, 710 Japan.  相似文献   

6.
In this study, high-betacyanin Suaeda salsa seedlings were developed and used to explore whether the betacyanin accumulation is related to salinity tolerance in S. salsa. After 8 days of culture, betacyanin content decreased markedly in both high-betacyanin S. salsa seedlings and the control under nonsalt stress, but the decreases were suppressed by NaCl treatments. Betacyanin content in high-betacyanin seedlings was much higher than that in the control throughout the salt treatments. Growth of S. salsa plants was significantly promoted by NaCl treatments, and the fresh weight of high-betacyanin seedlings was much higher than that of the control when grown in 400 mmol L−1 NaCl. Similar cell sap osmolarity and K+/Na+ ratios were observed in high-betacyanin seedlings and the control. No obvious differences in V-ATPase (tonoplast H+-ATPase) activity, leaf SOD (superoxide dismutase) activity, and total chloroplast SOD (including thylakoid-bound SOD and stroma SOD) activity were detected between high-betacyanin seedlings and the control under nonsalt stress conditions. However, V-ATPase hydrolytic activity increased dramatically in S. salsa seedlings when subjected to different levels of NaCl, and the increases in V-ATPase activity in high-betacyanin seedlings were much higher than that in the control. No clear pattern was observed for NaCl-dependent activity changes of P-ATPase (plasma membrane H+-ATPase) and V-PPase (tonoplast H+-pyrophosphatase). Similar changes were demonstrated in leaf SOD activity and chloroplast SOD activity under salt stress. Both leaf SOD activity and chloroplast SOD activity were markedly enhanced with the increase of NaCl or with time, especially thylakoid-bound SOD activity. Furthermore, the increases in chloroplast SOD activity and thylakoid-bound SOD activity were much higher in high-betacyanin seedlings than that in the control at different levels of NaCl treatment. The higher V-ATPase activity, chloroplastic SOD activity, and thylakoid-bound SOD activity demonstrated in high-betacyanin seedlings, but lower in the control, suggest that high-betacyanin S. salsa seedlings may have higher potential to be energized by the electrochemical gradient for ion uptake into the vacuole and to scavenge O2−• in situ produced in the chloroplasts, which may lead to higher salt tolerance than the control under salt stress. Thus, betacyanin may be involved in salt tolerance of S. salsa.  相似文献   

7.
Effects of Paclobutrazol on Response of Two Barley Cultivars to Salt Stress   总被引:1,自引:0,他引:1  
The seeds of two barley (Hordeum vulgare L.) cultivars (a drought resistant cv. Tokak-137/57 and a drought sensitive cv. Erginel-90) were imbibed either in distilled water (control) or in a solution containing 40 mg dm−3 paclobutrazol (PBZ) and air dried. Seeds were germinated and grown in a glasshouse for 21 d and seedlings were subjected to salt stress by treating them with 100 and 200 mM NaCl for 12 d. The height of shoots was significantly decreased and root length was increased in PBZ-treated plants prior and after NaCl stress for 12 d leading to an increase in root to shoot ratio. Leaf chlorophyll and carotenoid contents in PBZ treated plants were increased in controls and especially in plants subjected to salt stress. PBZ induced increase in superoxide dismutase (SOD) activities was higher in cv. Tokak-157/37, than in cv. Erginel-90. However, an increase in SOD activity was not accompanied by an increase in peroxidase activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The effects of 28-homobrassinolide (28-homoBL) on seedling growth, lipid peroxidation and antioxidative enzyme activities in the seedlings of Zea mays L. (var. Partap-1) under salt (NaCl) stress were studied. The surface-sterilized seeds were germinated in petriplates containing different concentrations of NaCl (25, 50, 75 and 100 mM) only, 28-homoBL (10−7, 10−9 and 10−11 M) only and NaCl supplemented with 28-homoBL for 7 days. The activities of superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (POD, EC 1.11.1.7), catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APOX, EC 1.11.1.11) and glutathione reductase (EC 1.6.4.2) were analysed in 7 day-old seedlings. It was observed that 28-homoBL treatments reduced the toxicity of salt on seedling growth considerably. Lipid peroxidation level was significantly increased under saline stress, but lowered with 28-homoBL applications revealing less oxidative damage. Further 28-homoBL treatments to the seedlings showed an enhancement in activities of SOD, POD, CAT and APOX. The activities of all antioxidative enzymes were further increased in seedlings treated with solution containing 28-homoBL and salt together as compared to seedlings treated with different concentration of salt solution only.  相似文献   

9.
Callus was obtained from hypocotyls of Mesembryanthemum crystallinum seedlings cultured on two types of medium—germination medium (GM) and callus induction medium (CIM). Following subculture on shoot induction medium SIM1, the callus formed on CIM medium regenerated roots or somatic embryos, while that obtained on GM medium was non-regenerative. The activities of CuZn-superoxidase dismutase (SOD) were comparable in all calli, but the activities of FeSOD and MnSOD varied according to the activity of photosystem II and the regenerative potential of the tissues. Catalase (CAT) activity was related to H2O2 concentration and affected by both the culture conditions and the morphogenic potential of the calli. The possible role of CAT, SODs and H2O2 in the regeneration of M. crystallinum from callus is discussed.This work is dedicated to Prof. Dr. Hubert Ziegler on his 80th birthday.  相似文献   

10.
11.
《Free radical research》2013,47(1):371-377
A chromosomal DNA fragment from the gram-positive bacterium Listeria ivanovii (ATCC 19119) encoding a superoxide dismutase (SOD) gene has been cloned in Escherichia coli QC779 (sodAsodB) using the plasmid vector pTZ19R. The DNA fragment inserted into the plasmid showed-high structural instability in E. coli QC779 (recA+). but turned out to be a stable 1.95 kbp DNA fragment when transformed into E. coli DHSa (recA-). The gene is expressed in both of these E. coli strains at high levels. Preliminary studies showed that the activity of the recombinant SOD within E. coli DHSα was up to 13-times the combined activity of both E. coli SODs. The recombinant SOD forms active hybrid SODS with both E. coli SODs in vivo.  相似文献   

12.
Kutschera U  Siebert C  Masuda Y  Sievers A 《Planta》1991,183(1):112-119
Caryopses of rice (Oryza sativa L. cv. Sasanishiki) were germinated in air or under water. In submerged seedlings a twofold increase in coleoptile growth rate and an inhibition of root growth was observed. The amount of starch in the amyloplasts of submerged coleoptiles was substantially reduced compared to the air-grown control plants and plastids had a proplastidic character. During the rapid elongation of coleoptiles under water, the osmotic concentration of the press sap remained constant, whereas in air-grown coleoptiles a decrease was measured. Determination of curvature of gravistimulated air-grown and submerged shoots was carried out by placing the coleoptiles horizontally in air of 98% relative humidity. Air-grown coleoptiles reached a vertical orientation within 5 h after onset of gravistimulation. In coleoptiles germinated under water the first signs of consistent negative gravitropic bending occurred after 4–5 h and curvature was complete after 24 h. During the first 5 h of gravistimulation the water-grown coleoptiles grew at an average rate of 0.39 mm·h–1, whereas in air-grown coleoptiles a rate of 0.27 mm·h–1 was measured. Concomitant with the delayed onset of gravitropic bending of the water-grown coleoptiles, a change in plastid ultrastructure and an increase in starch content was observed. We conclude that the gravitropic responsiveness of the rice coleoptile depends on the presence of starch-filled amyloplasts.We wish to thank H.-J. Ensikat for technical assistance with the scanning electron microscopy. Supported by the Bundesminister für Forschung und Technologie and the Deutsche Forschungsgemeinschaft.  相似文献   

13.
Activities of tricarboxylic acid (TCA) cycle enzymes in seedlings of barnyard grass (Echinochloa phyllopogon (Stapf.) Koss) and rice (Oryza sativa L.) germinated under aerobic and anaerobic conditions were investigated. In E. phyllopogon, development of TCA-cycle enzyme activities during 10 d of anoxia generally paralleled those in air, although at lower rates. After 5 d, E. phyllopogon seedlings germinating under N2 exhibited 50–80% of the activity of seedlings grown in air, except for 2-oxoglutarate dehydrogenase (EC 1.2.4.2) and fumarate reductase (EC 1.3.1.6) which exhibited only 25–35% of aerobic activity. In anaerobically germinated rice, development of TCA-cycle enzyme activities also paralleled those in air except for aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.41), and 2-oxoglutarate dehydrogenase. Those enzymes did not increase in activity under anoxia. Development of maximum enzyme activities generally occurred more rapidly and persisted longer in E. phyllopogon compared to rice. The data indicate that mitochondria of E. phyllopogon function better during anaerobiosis than those of rice and this factor may contribute to the successful biochemical strategy of this weed in rice paddies throughout the world.Abbreviation TCA tricarboxylic acid This work was supported by U.S. Department of Agriculture Competitive Research grant No. 87-CRCR1-2595 and a Herman Frasch Foundation grant in Agricultural Chemistry to R.A.K.  相似文献   

14.
Mutant SOD1 detoxification mechanisms in intact single cells   总被引:1,自引:0,他引:1  
Mutant superoxide dismutase 1 (mtSOD1) causes dominantly inherited amyotrophic lateral sclerosis (ALS). The mechanism for mtSOD1 toxicity remains unknown. Two main hypotheses are the impairment of proteasomal function and chaperone depletion by misfolded mtSOD1. Here, we employed FRET/FLIM and biosensor imaging to quantitatively localize ubiquitination, as well as chaperone binding of mtSOD1, and to assess their effect on proteasomal and protein folding activities. We found large differences in ubiquitination and chaperone interaction levels for wild-type (wt) SOD1 versus mtSOD1 in intact single cells. Moreover, SOD1 ubiquitination levels differ between proteasomal structures and cytoplasmic material. Hsp70 binding and ubiquitination of wt and mtSOD1 species are highly correlated, demonstrating the coupled upregulation of both cellular detoxification mechanisms upon mtSOD1 expression. Biosensor imaging in single cells revealed that mtSOD1 expression alters cellular protein folding activity but not proteasomal function in the neuronal cell line examined. Our results provide the first cell-by-cell-analysis of SOD1 ubiquitination and chaperone interaction. Moreover, our study opens new methodological avenues for cell biological research on ALS.  相似文献   

15.
Effects of polyethylene glycol (PEG)-induced water stress on the activities of total leaf superoxide dismutase (SOD) and chloroplast SOD (including thylakoid-bound SOD and stroma SOD) are described in white clover (Trifolium repens L.) grown in solution culture from rooted cuttings. Both leaf SOD and chloroplast SOD activities were markedly enhanced with increasing concentration of PEG stress, generating osmotic potentials around the roots 0, −0.5, −1.0, −1.5 MPa. The effects increased with time up to 72 h. Chloroplast Fe-containing SOD represented about 30% of the total leaf SOD activity in the control plants and a significant increase in chloroplast SOD activity was found during the stress period. This accounted for about 35.5–71.1% of the total leaf SOD activity. The proportion of chloroplast SOD in total leaf SOD not only increased with the decreasing of osmotic potential, but also increased with incubation time. Furthermore, the increase in thylakoid-bound SOD activity was much higher than that of stroma SOD in chloroplast of plants under water stress. The enhanced chloroplastic SOD activity, especially thylakoid-bound SOD activity, demonstrated in Trifolium repens suggests that Fe-SOD located in chloroplasts play a more important role than cytosolic Cu/Zn-containing SODs in scavenging O2 .  相似文献   

16.
The number and type of isoforms of superoxide dismutase (SOD) and their activities were compared in mitochondria and peroxisomes isolated from cotyledons of three different oilseed seedlings. Mitochondrial and peroxisomal isoforms of SOD could be distinguished in nondenaturing polyacrylamide gels by their differential sensitivities to KCN and/or H2O2. The type of SOD was not the same for each organelle in each of the three oilseed species. For example, a single Mn–SOD was found in cotton and cucumber mitochondria, whereas four CuZn–SODs were present in mitochondria from sunflower. At least one CuZn–SOD isoform was found in the peroxisomes of all three species. Cucumber peroxisomes contained both a CuZn–SOD and a Mn–SOD, cotton peroxisomes contained a single CuZn–SOD, whilst four separate CuZn–SODs, but no Mn–SOD were found in sunflower peroxisomes. Using antibodies against CuZn–SOD from watermelon peroxisomes or from chloroplasts of Equisetum , a single polypeptide of c . 16·5 kDa was detected on immunoblots of peroxisomal fractions from the three species. Post-embedment, electron-microscopic double immunogold-labelling showed that CuZn–SOD, with malate synthase used as marker enzyme of peroxisomes, was localized in the matrix of these organelles of all three species. These results suggest that CuZn–SOD is a characteristic matrix enzyme of peroxisomes in oilseed cotyledons.  相似文献   

17.
为进一步阐明盐生植物白刺耐盐性与多胺的关系,通过水培试验研究了叶面喷施亚精胺(Spd)对不同浓度NaCl胁迫下西伯利亚白刺幼苗叶片丙二醛(MDA)和超氧阴离子(O2)产生速率,以及抗氧化物酶系统和根系活力的影响.结果表明:叶面喷施0.1 mmol·L1 Spd 5 d后,可显著提高100和200 mmol·L1 NaCl胁迫下白刺幼苗叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)的活性以及根系活力,降低了叶片MDA含量和O2的产生速率;而在0、50、300 mmol·L-1 NaC1处理下,外施Spd对白刺幼苗叶片上述指标无显著影响.研究结果证实,在100~200 mmol·L-1 NaCl胁迫范围内,外施亚精胺可能通过增强体内保护酶活性来显著降低活性氧水平,有效减轻盐胁迫对盐生植物白刺幼苗造成的过氧化伤害,从而增强白刺对盐环境的适应性.  相似文献   

18.
Rice seeds were germinated for up to 5 days under water (submerged)and some for another day in air (air-adapted). Control seedswere germinated for 6 days throughout in air. Low-temperaturedifference spectra of shoot mitochondria were compared amongthese three types of seedlings. All cytochromes found in theaerobic seedlings were present in the submerged seedlings. However,there were some differences in the cytochromes b553 and c ofthese two types of seedlings. The cytochrome aa3 peak heightand cytochrome oxidase activity per mitochondrial protein increased1.6- and 2.8-fold, respectively, during air adaptation. Slightlyhigher concentrations of the b-type cytochromes than found inair-adapted mitochondria were already present in submerged mitochondria.The computed difference between the dithionite-reduced differencespectra of mitochondria from submerged seedlings before andafter air adaptation, showed that cytochromes aa3 and c hadincreased more than cytochrome b557 during air adaptation. (Received November 16, 1987; Accepted March 16, 1988)  相似文献   

19.
Sharma P  Dubey RS 《Plant cell reports》2007,26(11):2027-2038
When seedlings of rice (Oryza sativa L.) cultivar Pant-12 were raised in sand cultures containing 80 and 160 μM Al3+ in the medium for 5–20 days, a regular increase in Al3+ uptake with a concomitant decrease in the length of roots as well as shoots was observed. Al3+ treatment of 160 μM resulted in increased generation of superoxide anion (O2 ) and hydrogen peroxide (H2O2), elevated amount of malondialdehyde, soluble protein and oxidized glutathione and decline in the concentrations of thiols (-SH) and ascorbic acid. Among antioxidative enzymes, activities of superoxide dismutase (SOD EC 1.15.1.1), guaiacol peroxidase (Guaiacol POX EC 1.11.1.7), ascorbate peroxidase (APX EC 1.11.1.11), monodehydroascorbate reductase (MDHAR EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1) and glutathione reductase (EC 1.6.4.2) increased significantly, whereas the activities of catalase (EC EC 1.11.1.6) and chloroplastic APX declined in 160 μM Al3+ stressed seedlings as compared to control seedlings. The results suggest that Al3+ toxicity is associated with induction of oxidative stress in rice plants and among antioxidative enzymes SOD, Guaiacol POX and cytosolic APX appear to serve as important components of an antioxidative defense mechanism under Al3+ toxicity. PAGE analysis confirmed the increased activity as well as appearance of new isoenzymes of APX in Al3+ stressed seedlings. Immunoblot analysis revealed that changes in the activities of APX are due to changes in the amounts of enzyme protein. Similar findings were obtained when the experiments were repeated using another popular rice cv. Malviya-36.  相似文献   

20.
Two chickpea cultivars PBG-1 and PDG-3 along with a wild species Cicer judaicum were investigated to compare the activities of their antioxidant enzymes in mature seeds and roots, as well as shoots and cotyledons of seedlings germinated under dark and continuous illumination of 40 μmol m−2 s−1 photosynthetically active radiation (PAR). Seedling biomass of C. judaicum was lower as compared to cultivars of PBG-1 and PDG-3 both under dark and light conditions. Light reduced the biomass of seedlings. Activities of glutathione reductase (GR) and ascorbate peroxidase (APX) were higher in shoots and roots of C. judaicum compared to the cultivars PBG-1 and PDG-3. In mature seeds, the activities of GR and APX were higher in the cultivated genotypes whereas catalase (CAT) and peroxidase were higher in C. judaicum. Under illumination, a general upregulation of CAT in both shoots and cotyledons and of GR in shoots was observed in all the three genotypes. However, superoxide dismutase (SOD) increased in C. judaicum and APX in PBG-1 and PDG-3. The differences in antioxidant enzyme system between wild and cultivated genotypes possibly contribute to better tolerance of wild Cicer species against abiotic and biotic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号