首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
超级杂交水稻谷粒产量与叶光合速率的关系   总被引:6,自引:0,他引:6  
在2000~2005年期间,通过测定几种超级杂交水稻与普通杂交水稻‘汕优63’的产量构成和叶片光合作用探讨了谷粒产量与光合作用的关系。结果表明:(1)4种超级杂交水稻‘培矮64S/E32’、‘P88S/O293’、‘金23A/611’和‘GD-lS/ RB207’的产量水平显著高于‘汕优63’,是对照的108%~120%。(2)与‘汕优63’相比,这些超级杂交水稻的株型好,上层叶片直立,穗大即每穗粒数多,是对照的125%~177%。(3)与‘汕优63’相比,这些组合第二叶的净光合速率显著提高,但第一叶即剑叶的未必都较高。(4)去半叶处理降低了‘GD-1S/RB207’的结实率,而去半穗处理显著提高了结实率。因此,这些超级杂交水稻的高产原因在于穗大、株型好以及群体光能利用效率高。增加单叶特别是剑叶的光合能力是克服谷粒产量的光合产物源限制和在未来的超级杂交水稻育种中实现产量潜力新突破的关键。  相似文献   

2.
Characteristics of photosynthetic gas exchange, photoinhibition and C4 pathway enzyme activities in both flag leaves and lemma were compared between a superhigh-yield rice (Oryza sativa L.) hybrid, Liangyoupeijiu and a traditional rice hybrid, Shanyou63. Liangyoupeijiu had a similar light saturated assimilation rate (Asat) to Shanyou63, but a much higher apparent quantum yield (AQY), carboxylation efficiency (CE) and quantum yield of CO2 fixation (φCO2). Liangyoupeijiu also showed a higher resistance to photoinhibition and higher non-radiative energy dissipation associated with the xanthophyll cycle than Shanyou63 when subjected to strong light. In addition, Liangyoupeijiu had higher activities of the C4 pathway enzymes in both flag leaves and lemmas than Shanyou63. These results indicate that higher light and CO2 use efficiency, higher resistance to photoinhibition and C4 pathway in both flag leaf and lemma may contribute to the higher yield of the superhigh-yield rice hybrid, Liangyoupeijiu.  相似文献   

3.
Characteristics of photosynthetic gas exchange, photoinhibition and C4 pathway enzyme activities in both flag leaves and lemma were compared between a superhigh-yield rice (Oryza sativa L.) hybrid, Liangyoupeijiu and a traditional rice hybrid, Shanyou63. Liangyoupeijiu had a similar light saturated assimilation rate (Asat) to Shanyou63, but a much higher apparent quantum yield (AQY), carboxylation efficiency (CE) and quantum yield of CO2 fixation (ΦCO2). Liangyoupeijiu also showed a higher resistance to photoinhibition and higher non-radiative energy dissipation associated with the xanthophyll cycle than Shanyou63 when subjected to strong light. In addition, Liangyoupeijiu had higher activities of the C4 pathway enzymes in both flag leaves and lemmas than Shanyou63. These results indicate that higher light and CO2 use efficiency, higher resistance to photoinhibition and C4 pathway in both flag leaf and lemma may contribute to the higher yield of the superhigh-yield rice hybrid, Liangyoupeijiu.  相似文献   

4.
Characteristics of photosynthetic light and CO2 use efficiency from seedling to heading stage, and C4 pathway enzyme activities in both flag leaves and lemma were compared between two newly developed super-rice hybrids (Oryza sativa L.), Liangyoupeijiu and Hua-an 3, and a traditional rice hybrid, Shanyou 63. At seedling and tillering stages, Liangyoupeijiu and Hua-an 3 had higher net photosynthetic rates (Pn) and light saturated assimilation rates (Asat) than did Shanyou 63, at both normal (360 micromol mol(-1)) and doubled (720 micromol mol(-1)) CO2 concentrations. At the heading stage, the flag leaves of all three rice hybrids had similar Pn and Asat. However, the two super-rice hybrids had higher apparent quantum yield (AQY) and carboxylation efficiency (CE) during all three typical developmental stages, and higher quantum yield of CO2 fixation (PhiCO2) at the tillering and heading stages. In addition, Liangyoupeijiu showed significantly higher activities of the C(4) pathway enzymes in both flag leaves and lemmas than did Shanyou 63. As a result, flag leaves of the two super-rice hybrids had higher Pn at morning, noontime and late afternoon during the daily cycle. Since most of the grain yield of rice comes from the photosynthesis of flag leaves, the similar Asat and much higher AQY, CE and PhiCO2 at heading stage of the two super-rice hybrids indicates that higher photosynthetic efficiency rather than higher photosynthetic capacity may be the primary factor contributing to their higher grain yields.  相似文献   

5.
The characteristics of dry matter production before and after heading and the relationships between photosynthesis of flag leaves and dry matter accumulation in panicles were investigated on super high-yielding rice cv. Xieyou 9308 (the yield of up to 12 t/ha) with rice cv. Xieyou 63 as a control. The results showed that (i) the capacity of dry matter production before and after heading in Xieyou 9308, i.e. biomass and daily dry matter production, was remarkably higher than that in Xieyou 63, especially after heading; (ii) CO2 assimilation capacity in flag leaves in Xieyou 9308, namely Leaf Source Capacity (LSC), was also significantly higher than that in Xieyou 63, and the supply of photosynthate in leaves and the demand of grain filling were completely synchronous in Xieyou 9308, but photosynthetic function in flag leaves in Xieyou 63 declined sharply 20 days after heading and it was not enough to meet the demand of grain filling. These results confirmed that high efficient photosynthetic function in  相似文献   

6.
The characteristics of dry matter production before and after heading and the relationships between photosynthesis of flag leaves and dry matter accumulation in panicles were investigated on super high-yielding rice cv. Xieyou 9308 (the yield of up to 12 t/ha) with rice cv. Xieyou 63 as a control. The results showed that (i) the capacity of dry matter production before and after heading in Xieyou 9308, i.e. biomass and daily dry matter production, was remarkably higher than that in Xieyou 63, especially after heading; (ii) CO2 assimilation capacity in flag leaves in Xieyou 9308, namely Leaf Source Capacity (LSC), was also significantly higher than that in Xieyou 63, and the supply of photosynthate in leaves and the demand of grain filling were completely synchronous in Xieyou 9308, but photosynthetic function in flag leaves in Xieyou 63 declined sharply 20 days after heading and it was not enough to meet the demand of grain filling. These results confirmed that high efficient photosynthetic function in leaves after heading and its complete synchronization with grain filling are the key approaches to super high yield of rice.  相似文献   

7.
The characteristics of dry matter production before and after heading and the relationships between photosynthesis of flag leaves and dry matter accumulation in panicles were investigated on super high-yielding rice cv. Xieyou 9308 (the yield of up to 12 t/ha) with rice cv. Xieyou 63 as a control. The results showed that (i) the capacity of dry matter production before and after heading in Xieyou 9308, i.e. biomass and daily dry matter production, was remarkably higher than that in Xieyou 63, especially after heading; (ii) CO2 assimilation capacity in flag leaves in Xieyou 9308, namely Leaf Source Capacity (LSC), was also significantly higher than that in Xieyou 63, and the supply of photosynthate in leaves and the demand of grain filling were completely synchronous in Xieyou 9308, but photosynthetic function in flag leaves in Xieyou 63 declined sharply 20 days after heading and it was not enough to meet the demand of grain filling. These results confirmed that high efficient photosynthetic function in leaves after heading and its complete synchronization with grain filling are the key approaches to super high yield of rice.  相似文献   

8.
To understand the physiological reasons for poor yield of the second rice crop in southern China challenged by low temperature. The authors investigated the effects of chilling temperature on photosynthesis and the activity of fructose 1, 6-diphosphatase (FBPase) of flag leaves at milky stage using two hybrid rice varieties with different cold tolerance. The results indicated that chilling temperature caused decreases of photosynthetic efficiency and FBPase activity in detached flag leaves. The decline of photosynthetic efficiency and FBPase activity was greater in Shanyou-63 which is as cold sensitive as its parents than in Xiuyou-57 which is cold tolerant like its parents. The milky stage is the period of the fastest grain filling. The decreased the yield of the second rice crop caused by natural low temperature was associated with decline of photosynthesis and the abilities of adaption and adjustment of FBPase in attached flag leaves. The relationship between the effects of chilling temperature on photosynthesis and photosynthate transport and the yield formed by grain was discussed.  相似文献   

9.
为了解寒露风引起晚稻减产的生理原因,本试验以两个不同抗冷力的杂交水稻组合为材料,研究了低温对水稻乳熟期剑叶光合作用与果糖1,6-二磷酸酯酶(FBPase)活性的影响。结果表明:低温引起离体剑叶光合效率与FBPase 活性下降,不抗冷的“汕优63”及其亲本的光合效率与FBPase 活性比抗冷的“秀优57”及其亲本下降幅度较大。乳熟期是籽粒灌浆的高峰期,自然低温(寒露风)造成晚造水稻减产与乳熟期连体剑叶的光合作用下降和FBPase 对低温的适应和调节能力有关  相似文献   

10.
 较系统地研究了抽穗期超高产杂交稻‘华安3号’(`X075’×`紫恢100’)冠层顶部5片叶片的光合功能。结果表明,‘华安3号’剑叶的光系统Ⅱ(PSII)光化学最大效率(Fv/Fm)、开放的PSⅡ反应中心捕获激发能效率(Fv′/Fm′)、PSⅡ电子传递量子效率(ΦPSⅡ)、光化学猝灭系数(qP)、表观电子传递效率(ETR)、光合色素尤其是叶绿素(Chl)和类胡萝卜素(Car)中的新黄素、黄体素和β-胡萝卜素(β-Car)的含量等均优于其下的各叶,而PSⅡ的激发压力(1-qP)低于其它叶片。经对叶片低温(77K)荧光发射光谱的Gaussian解析,与其它各叶片相比,剑叶PSⅡ核心天线复合物CP47和光系统Ⅰ(PSⅠ)的含量较高,而非活性的PSⅡ捕光色素蛋白复合体(LHCⅡ)聚集态含量较少。研究证明:1)水稻在决定籽粒产量的生育后期,其干物质的积累主要是由冠层最上面的3片叶的光合作用所提供;2)在叶片衰老过程中,光合反应中心的衰老早于天线系统;3)杂交稻的光保护途径之一,可能在于光抑制条件下通过增加PSⅠ含量及其对光能的吸收并刺激环式电子传递高速运转,从而对光合器起保护作用;4)水稻叶片在衰老过程中,可能通过部分Chl b还原为Chl a,以降低LHCⅡ的含量,从而减少对光能的捕获,达到降低光抑制的伤害。  相似文献   

11.
郑华斌  刘建霞  姚林  贺慧  黄璜   《生态学杂志》2014,25(9):2598-2604
2011—2012年在湖南长沙以超级杂交稻Y两优1号、杂交稻汕优63和常规稻黄华占为材料进行大田试验,比较了垄作梯式生态稻作(RT)和垄厢生态稻作(B)对水稻产量和光合生理特性的影响.结果表明: 与传统稻作(CK)相比,RT的Y两优1号产量显著提高了28.7%,单位面积有效穗数显著提高16.1%,每穗粒数高6.8%,汕优63和黄华占的RT、B处理产量分别高24.3%和19.7%、12.0%和16.2%.RT的Y两优1号叶面积、抽穗前及抽穗后干物质积累量、总干物质量都高于CK,颖花数/叶面积、实粒数/叶面积、粒重/叶面积分别比CK高8.1%、14.8%和15.8%,光合势比CK高32.2%,而净同化率则比CK低9.3%.
  相似文献   

12.
 较为系统地研究了两个超高产杂交稻‘两优培九’、‘华安3号’和多年来大面积推广的常规杂交稻‘汕优63’不同生育期的光合色素含量、净光合速率和水分利用效率。结果表明,在苗期,3个杂交稻的单位叶面积的叶绿素(Chl)含量差别不大,类胡萝卜素(Car)的含量以‘汕优63’为最高。然而,随着发育阶段的推进,到分蘖期,尤其是抽穗期剑叶的单位叶面积Chl和Car含量,两个超高产杂交稻高于‘汕优63’。从苗期到抽穗期,超高产杂交稻‘两优培九’和‘华安3号’的净光合速率(Pn)都比‘汕优63’高,而在苗期的午间强光条件下和分蘖期的早晨以及抽穗期的早晚相对弱光条件下其Pn的差别尤为显著。在苗期,‘汕优63’的水分利用效率(WUE)略高于‘两优培九’和‘华安3号’;到分蘖期和抽穗期,在上午10时之前和下午14时以后的时间段,则是两个超高产杂交稻明显高于‘汕优63’。这些结果说明,超高产杂交稻‘两优培九’和‘华安3号’不仅有较高的Pn和较强的抗光抑制能力,而且还能充分利用早晨和傍晚较弱的光强进行光合作用,这些是它们之所以高产的重要生理基础。此外,超高产杂交稻在生长发育的中后期(分蘖期和抽穗期)具有较高的WUE,有利于节约农业用水。  相似文献   

13.
以杂交中熟籼稻品种金优63、汕优63为供试材料,采用盆栽试验,在水稻生长前期连续喷施3次硅酸钠(Na2SiO3·9H2O),于人工气候箱内在水稻开花期进行常温(日均温26.6 ℃,日最高温度29.4 ℃)和高温(日均温33.2 ℃,日最高温度40.1 ℃)处理5 d,研究施硅在花期高温胁迫下对杂交水稻剑叶叶绿素含量、光合性能、抗氧化酶活性、丙二醛(MDA)含量、花粉活力、花药酸性转化酶活性、柱头授粉性能和结实率等的影响.结果表明: 与对照相比,施硅可显著提高高温胁迫下水稻剑叶叶绿素含量,提高净光合速率和气孔导度,减少胞间CO2浓度,增强叶片光合作用,减少MDA含量,提高超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性;提高花药中可溶性酸性转化酶活性和花粉活力,增加花粉囊基部裂口宽度,提高水稻每柱头上授粉总数、萌发数、花粉萌发率和萌发数大于10粒者所占的比例,降低花粉总数小于20粒者所占的比例;使金优63、汕优63结实率的降低分别减轻13.4%、14.1%.因此,在水稻生长前期喷施外源硅,可减轻水稻在开花期结实率的降低,提高杂交水稻的抗热性.  相似文献   

14.
王小燕  于振文 《西北植物学报》2005,25(10):1976-1982
选择大穗大粒型品种914391、鲁麦22(L22)和中穗中粒型品种济南17(J17)、鲁麦18(L18),研究了不同穗粒型品种光合特性的差异及其与粒重和产量的关系。结果表明,大穗大粒型品种914391和L2叶光合速率、旗叶磷酸蔗糖合成酶活性显著高于中穗中粒型品种J17和L18,前者的单茎干重和开花后单茎、茎+叶鞘、颖壳+轴等器官的干物质向籽粒的转移量显著大于后者,为最终获得较高的单粒重和穗粒重奠定物质基础;中穗中粒型品种J17和L18的单位土地面积的穗数显著高于大穗大粒型品种914391和L2,以单位土地面积上旗叶平均光合速率与单茎数的乘积表示群体旗叶光合强度,J17和L18的群体旗叶光合强度、生物产量和经济系数均显著高于914391、L22,这是它们籽粒产量高的重要原因之了。  相似文献   

15.
Leaf blades of the late-sown winter wheat produced the major portion, i.e., more than 60 %, of the total 14C-photosynthates at grain filling, but ear (rachis and glumes) only about 15 %, sheaths about 11 %, and stem internodes about 11 %. The change of plant density in this experiment had little influence on the 14CO2-photoassimilation of the ear (rachis and glumes), flag leaf lamina, sheaths and stem internodes, but markedly affected photosynthesis of the second, the third and lower leaves. The photosynthetic rate [expressed as specific radioactivity, s-1 kg-1(d.m.)] and the amount of 14CO2 photosynthates decreased significantly in the second, the third and other lower leaves at a high plant density. Upon grain-filling of the late-sown wheat, the grain was the major importer of photosynthates. Yet partitioning to the stem internodes depended on the plant density. Stem was the importer of photosynthates at a low plant density, but the exporter at a high plant density. In plants at a low plant density a fairly large proportion of photosynthates was distributed into the roots. The middle and lower above-ground parts of the late-sown wheat at a high plant density decreased or lost their function early. As a result, the plant senesced earlier. However, the grain setting, filling and yielding were restricted. An appropriately low plant density was suitable for prolonging the function of the middle and lower organs, delaying the senescence of plant, increasing the source supply for grain filling, and improving the grain yield. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
邓志瑞  陆巍  万建民  张荣铣 《广西植物》2002,22(6):567-571-571
以武育粳 8号 (Wuyujing8)和普通野生稻 (Oryza.sativaL .f.spontaneaRoschev .)为材料 ,比较了它们剑叶光合功能衰退的进程。结果表明 ,在剑叶一生中 ,武育粳 8号剑叶的叶绿素含量和光合速率都高于普通野生稻 ,光合速率的最高值前者为 2 3 .5 μmolCO2 m 2 ·S 1,后者为 1 5 .5 μmolCO2 m 2 ·S 1。前者剑叶光合速率的高值持续期比后者长近 2 0d ,其叶源量是后者的 2 .8倍。武育粳 8号剑叶叶绿素含量最大值的SPAD值为 5 0 .1 ,而普通野生稻最大值的SPAD值为 42 .7。在可溶性蛋白质的基础上 ,核酮糖 1 ,5 二磷酸羧化酶比活性二者之间没有太大区别。内肽酶活力上升落后于光合功能的衰退。在光合功能衰退的早期 ,内肽酶的活力仅有小幅度提高 ,但在叶片衰老的末期升高幅度则较大。这说明内肽酶主要在光合功能衰退的后期即不可逆衰退期才发挥较大作用。  相似文献   

17.
Using water infiltration of the plant and individual shoots with the subsequent intercellular liquid extraction by the pressure chamber, dynamics of the movement 14C-photosynthates from cell to apoplast, and 14C distribution among photosynthetic products in mesophyll cells and apoplast were studied. The relative quantity of 14C-photosynthetes in leaf apoplast depended on growing conditions; drought increased, and nitrate supply decreased it. When the middle leaves absorbed 14CO2, photosynthates moving down in stem phloem appeared in intercellular space, where they were transported up by transpiration stream. 14C-photosynthates entering to the apex and young leaves were utilized a accumulated, and photosynthates transported to the mature leaves were reloaded into the phloem and reexported. Thus, photosynthates circulated through the plant and were redistributed to the plant organs according to their transpiration. In leaf apoplast photosynthetic sucrose was partly hydrolyzed to glucose and fructose. This increased under high nitrogen supply. The result indicate that apoplast sucrose hydrolysis is the basic cause of the reduction of photosynthate flux from leaves when the nitrate concentration in soil increases.  相似文献   

18.
水稻剑叶取向对其光合功能的影响   总被引:18,自引:0,他引:18  
水稻的水平剑叶净光合速率 (Pn)和羧化效率(CE)显著高于直立剑叶 ,其胞间CO2 浓度 (Ci)显著低于直立剑叶 ,但两者的气孔导度 (Gs)没有明显差别。这表明剑叶取向对水稻叶片的光合能力有重要影响。水平剑叶的高Pn可能同其RuBP羧化酶含量和活性高有关。这可能是水平叶生长期间吸收光量较多的结果。  相似文献   

19.
The changes in photochemical features of PhotosystemⅡ(PSⅡ) and contents of Rubisco large subunit (RLS) and small subunit (RSS) in flag leaf from 75DAS to 113DAS (from filling to harvesting stages) were investigated in two hybrid rices (Oryza sativa L.) cv. Liangyoupeijiu and cv. Shanyou 63 grown in the field. Liangyoupeijiu is a super high-yielding rice and Shanyou 63 has widely been planted in China in these years. The results indicate that soluble protein and chlorophyll in both cultivars degraded slowly at first and dramatically thereafter. The degradation speed of soluble protein in Shanyou 63 was faster than that in Liangyoupeijiu. Both Fv/Fm and qP decreased in parallel with leaf senescence, whereas qN fell at first and then rose. No significant change in excitation pressure (1-qP ) was found before 89DAS but a sharply increase in both cultivars after it occurred. Excitation pressure rose more rapidly in Shanyou 63 than that in Liangyoupeijiu. The changes of RLS and RSS content exhibited the same trend as that of soluble protein content. A better linear correlation between RLS, RSS degradation and elevation of (1-qP ) were shown in both cultivars. We suggest that the increase in PSⅡ excitation pressure possibly induced the quick senescence process in rice flag leaf. The high-yielding of Liangyoupeijiu may be due to its maintenance of stronger photosynthetic capacity, longer and more stable photosynthetic functional du-ration than that of Shanyou 63.  相似文献   

20.
The composition of cuticular wax from plants of spring wheat (varieties Selkirk and Manitou) and of durum wheat (variety Stewart 63) at various stages of growth, and of wax from different parts of the plants varies considerably. Wax was analysed, without preliminary separation, by GLC using Dexsil 300 as liquid phase. Alcohols are major components of wax from leaf blades and β-diketones are major components of wax from leaf sheaths, especially the flag leaf sheath. Glaucousness of the leaf sheath is due to the high β-diketone content. In the first 50 days after germination, before sheaths and flag leaf are completely developed, the major component is octacosanol (> 50%). At 66 days, when sheath development is complete, β-diketone content is greatest. Hydrocarbon composition differs for wax from leaf blade and leaf sheath and also for different leaf blades and between adaxial and abaxial sides of the flag leaf. From 66 to 100 days ester content of wax increases, especially in Selkirk wheat, apparently due to formation of wax containing high proportions of esters of trans-α,β-unsaturated C22 and C24 acids. The content of these acids in the free fatty acids and of diesters based on these acids also increases during this period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号