首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In both prokaryotic and eukaryotic organisms, nucleoside diphosphate kinase is a multifunctional protein, with well defined functions in ribo- and deoxyribonucleoside triphosphate biosynthesis and more recently described functions in genetic and metabolic regulation, signal transduction, and DNA repair. This paper concerns two unusual properties of nucleoside diphosphate (NDP) kinase from Escherichia coli: 1) its ability to interact specifically with enzymes encoded by the virulent bacteriophage T4 and 2) its roles in regulating metabolism of the host cell. By means of optical biosensor analysis, fluorescence spectroscopy, immunoprecipitation, and glutathione S-transferase pull-down assays, we have shown that E. coli NDP kinase interacts directly with T4 thymidylate synthase, aerobic ribonucleotide reductase, dCTPase-dUTPase, gene 32 single-strand DNA-binding protein, and deoxycytidylate hydroxymethylase. The interactions with ribonucleotide reductase and with gp32 are enhanced by nucleoside triphosphates, suggesting that the integrity of the T4 dNTP synthetase complex in vivo is influenced by the composition of the nucleotide pool. The other investigations in this work stem from the unexpected finding that E. coli NDP kinase is dispensable for successful T4 phage infection, and they deal with two observations suggesting that the NDP kinase protein plays a genetic role in regulating metabolism of the host cell: 1) the elevation of CTP synthetase activity in an ndk mutant, in which the structural gene for NDP kinase is disrupted, and 2) the apparent ability of NDP kinase to suppress anaerobic growth in a pyruvate kinase-negative E. coli mutant. Our data indicate that the regulatory roles are metabolic, not genetic, in nature.  相似文献   

2.
3.
Nucleoside diphosphate kinase plays a distinctive metabolic role as the enzyme poised between the last reaction of deoxyribonucleoside triphosphate (dNTP) biosynthesis and the DNA polymerization apparatus. In bacteriophage T4 infection, NDP kinase is one of very few enzymes of host cell origin to participate in either dNTP synthesis or DNA replication. Yet NDP kinase forms specific contacts with phage-coded proteins of dNTP and DNA synthesis. This article summarizes work from our laboratory that identifies and characterizes these interactions. Despite these specific interactions, the enzyme appears to be dispensable, both for T4 replication and for growth of the host, Escherichia coli, because site-specific disruption of ndk, the structural gene for NDP kinase, does not interfere with growth of the host cell and only partly inhibits phage replication. However, ndk disruption unbalances the dNTP pools and stimulates mutagenesis. We discuss our attempts to understand the basis for this enhanced mutagenesis.  相似文献   

4.
5.
Adenylate kinase, which catalyzes the reversible ATP-dependent phosphorylation of AMP to ADP and dAMP to dADP, can also catalyze the conversion of nucleoside diphosphates to the corresponding triphosphates. Lu and Inouye (Lu, Q., and Inouye, M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 5720-5725) showed that an Escherichia coli ndk mutant, lacking nucleoside diphosphate kinase, can use adenylate kinase as an alternative source of nucleoside triphosphates. Bacteriophage T4 can reproduce in an Escherichia coli ndk mutant, implying that adenylate kinase can meet a demand for deoxyribonucleoside triphosphates that increases by up to 10-fold as a result of T4 infection. In terms of kinetic linkage and specific protein-protein associations, NDP kinase is an integral component of T4 dNTP synthetase, a multienzyme complex containing phage-coded enzymes, which facilitates the synthesis of dNTPs and their flow into DNA. Here we asked whether, by similar criteria, adenylate kinase of the host cell is also a specific component of the complex. Experiments involving protein affinity chromatography, immunoprecipitation, optical biosensor measurements, and glutathione S-transferase pulldowns demonstrated direct interactions between adenylate kinase and several phage-coded enzymes, as well as E. coli nucleoside diphosphate kinase. These results identify adenylate kinase as a specific component of the complex. The rate of DNA synthesis after infection of an ndk mutant was found to be about 40% of the rate seen in wild-type infection, implying that complementation of the missing NDP kinase function by adenylate kinase is fairly efficient, but that adenylate kinase becomes rate-limiting for DNA synthesis when it is the sole source of dNTPs.  相似文献   

6.
7.
The gene 32 protein (gp32) of bacteriophage T4 is the essential single-stranded DNA (ssDNA)-binding protein required for phage DNA replication and recombination. gp32 binds ssDNA with high affinity and cooperativity, forming contiguous clusters that optimally configure the ssDNA for recognition by DNA polymerase or recombination enzymes. The precise roles of gp32 affinity and cooperativity in promoting replication and recombination have yet to be defined, however. Previous work established that the N-terminal "B-domain" of gp32 is essential for cooperativity and that point mutations at Arg(4) and Lys(3) positions have varying and dramatic effects on gp32-ssDNA interactions. Therefore, we examined the effects of six different gp32 B-domain mutants on T4 in vitro systems for DNA synthesis and homologous pairing. We find that the B-domain is essential for gp32's stimulation of these reactions. The stimulatory efficacy of gp32 B-domain mutants generally correlates with the hierarchy of relative ssDNA binding affinities, i.e. wild-type gp32 approximately R4K > K3A approximately R4Q > R4T > R4G gp32-B. However, the functional defect of a particular mutant is often greater than can be explained simply by its ability to saturate the ssDNA at equilibrium, suggesting additional defects in the proper assembly and activity of DNA polymerase and recombinase complexes on ssDNA, which may derive from a decreased lifetime of gp32-ssDNA clusters.  相似文献   

8.
Semi-conservative DNA synthesis reactions catalyzed by the bacteriophage T4 DNA polymerase holoenzyme are initiated by a strand displacement mechanism requiring gp32, the T4 single-stranded DNA (ssDNA)-binding protein, to sequester the displaced strand. After initiation, DNA helicase acquisition by the nascent replication fork leads to a dramatic increase in the rate and processivity of leading strand DNA synthesis. In vitro studies have established that either of two T4-encoded DNA helicases, gp41 or dda, is capable of stimulating strand displacement synthesis. The acquisition of either helicase by the nascent replication fork is modulated by other protein components of the fork including gp32 and, in the case of the gp41 helicase, its mediator/loading protein gp59. Here, we examine the relationships between gp32 and the gp41/gp59 and dda helicase systems, respectively, during T4 replication using altered forms of gp32 defective in either protein-protein or protein-ssDNA interactions. We show that optimal stimulation of DNA synthesis by gp41/gp59 helicase requires gp32-gp59 interactions and is strongly dependent on the stability of ssDNA binding by gp32. Fluorescence assays demonstrate that gp59 binds stoichiometrically to forked DNA molecules; however, gp59-forked DNA complexes are destabilized via protein-protein interactions with the C-terminal "A-domain" fragment of gp32. These and previously published results suggest a model in which a mobile gp59-gp32 cluster bound to lagging strand ssDNA is the target for gp41 helicase assembly. In contrast, stimulation of DNA synthesis by dda helicase requires direct gp32-dda protein-protein interactions and is relatively unaffected by mutations in gp32 that destabilize its ssDNA binding activity. The latter data support a model in which protein-protein interactions with gp32 maintain dda in a proper active state for translocation at the replication fork. The relationship between dda and gp32 proteins in T4 replication appears similar to the relationship observed between the UL9 helicase and ICP8 ssDNA-binding protein in herpesvirus replication.  相似文献   

9.
H Xu  Y Wang  J S Bleuit  S W Morrical 《Biochemistry》2001,40(25):7651-7661
The gene 59 protein (gp59) of bacteriophage T4 performs a vital function in phage DNA replication by directing the assembly of gp41, the DNA helicase component of the T4 primosome, onto lagging strand ssDNA at nascent replication forks. The helicase assembly activity of gp59 is required for optimum efficiency of helicase acquisition by the replication fork during strand displacement DNA synthesis and is essential for helicase and primosome assembly during T4 recombination-dependent DNA replication transactions. Of central importance is the ability of gp59 to load the gp41 helicase onto ssDNA previously coated with cooperatively bound molecules of gp32, the T4 ssDNA binding protein. Gp59 heteroassociations with ssDNA, gp32, and gp41 all appear to be essential for this loading reaction. Previous studies demonstrated that a tripartite complex containing gp59 and gp32 simultaneously cooccupying ssDNA is an essential intermediate in gp59-dependent helicase loading; however, the biochemical and structural parameters of gp59-gp32 complexes with or without ssDNA are currently unknown. To better understand gp59-gp32 interactions, we performed fluorescence anisotropy and analytical ultracentrifugation experiments employing native or rhodamine-labeled gp59 species in combination with altered forms of gp32, allowing us to determine their binding parameters, shape parameters, and other hydrodynamic properties. Two truncated forms of gp32 were used: gp32-B, which lacks the N-terminal B-domain required for cooperative binding to ssDNA and for stable self-association, and A-domain fragment, which is the C-terminal peptide of gp32 lacking ssDNA binding ability. Results indicate that gp59 binds with high affinity to either gp32 derivative to form a 1:1 heterodimer. In both cases, heterodimer formation is accompanied by a conformational change in gp59 which correlates with decreased gp59-DNA binding affinity. Hydrodynamic modeling suggests an asymmetric prolate ellipsoid shape for gp59, consistent with its X-ray crystallographic structure, and this asymmetry appears to increase upon binding of gp32 derivatives. Implications of our findings for the structure and function of gp59 and gp59-gp32 complexes in T4 replication are discussed.  相似文献   

10.
Is the enzymatic machinery for DNA precursor biosynthesis linked to the DNA replication apparatus? To identify intermolecular associations among deoxyribonucleotide biosynthetic enzymes and to ask whether these enzymes are linked to replication proteins, we analyzed radiolabeled T4 bacteriophage proteins that bind specifically to a column of immobilized T4 deoxycytidylate hydroxymethylase. More than a dozen T4 proteins and a few Escherichia coli proteins are adsorbed specifically by this column. Several of the T4 proteins were identified by two-dimensional gel electrophoresis and radioautography. These include five enzymes involved in DNA precursor biosynthesis, dCMP hydroxymethylase, thymidylate synthase, dihydrofolate reductase, dCTPase-dUTPase, and ribonucleotide reductase large and small subunits, plus several proteins of DNA metabolism and replication. Analysis of extracts of cells infected with phage amber mutants defective in specific proteins suggested a specific association involving thymidylate synthase and the gene 32 single-strand DNA-binding protein.  相似文献   

11.
12.
Ribonucleotide reductase catalyzes the production of deoxyribonucleoside diphosphates, the precursors of deoxyribonucleoside triphosphates for DNA synthesis. Mammalian ribonucleotide reductase (RNR) is a tetramer consisting of two non-identical homodimers, R1 and either R2 or p53R2, which are considered to be involved in DNA replication and repair, respectively. We have demonstrated that DNA damage by doxorubicin and cisplatin caused a steady elevation of the R2 protein in p53(-/-) HCT-116 human colon carcinoma cells but induced degradation of the protein in p53(+/+) cells. To evaluate the involvement of R2 in response to DNA damage, p53(-/-) HCT-116 cells were stably transfected with an expression vector transcribing short hairpin/short interference RNA directed against R2 mRNA. Stably transfected clones exhibited a pronounced reduction of the R2 protein with no change in the cellular growth rate. Furthermore, short interference RNA-mediated reduction of the R2 protein caused a marked increase in sensitivity to the DNA-damaging agent cisplatin as well as to the RNR inhibitors Triapine and hydroxyurea. Ectopic expression of p53R2 partially reversed the cytotoxicity of cisplatin but not that of RNR inhibitors to R2 knockdown cells. The increase in sensitivity to cisplatin and RNR inhibitors was correlated with the suppression of dATP and dGTP levels caused by stable expression of R2-targeted short interference RNA. These results indicated that DNA damage resulted in elevated levels of the R2 protein and dNTPs and, consequently, enhanced the survival of p53(-/-) HCT-116 cells. The findings provide evidence that R2-RNR can be employed to supply dNTPs for the repair of DNA damage in cells with an impaired p53-dependent induction of p53R2.  相似文献   

13.
14.
Ribonucleotide reductase (RNR) and deoxycytidylate deaminase (dCMP deaminase) are pivotal allosteric enzymes required to maintain adequate pools of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis and repair. Whereas RNR inhibition slows DNA replication and activates checkpoint responses, the effect of dCMP deaminase deficiency is largely unknown. Here, we report that deleting the Schizosaccharomyces pombe dcd1+ dCMP deaminase gene (SPBC2G2.13c) increases dCTP ∼30-fold and decreases dTTP ∼4-fold. In contrast to the robust growth of a Saccharomyces cerevisiae dcd1Δ mutant, fission yeast dcd1Δ cells delay cell cycle progression in early S phase and are sensitive to multiple DNA-damaging agents, indicating impaired DNA replication and repair. DNA content profiling of dcd1Δ cells differs from an RNR-deficient mutant. Dcd1 deficiency activates genome integrity checkpoints enforced by Rad3 (ATR), Cds1 (Chk2), and Chk1 and creates critical requirements for proteins involved in recovery from replication fork collapse, including the γH2AX-binding protein Brc1 and Mus81 Holliday junction resolvase. These effects correlate with increased nuclear foci of the single-stranded DNA binding protein RPA and the homologous recombination repair protein Rad52. Moreover, Brc1 suppresses spontaneous mutagenesis in dcd1Δ cells. We propose that replication forks stall and collapse in dcd1Δ cells, burdening DNA damage and checkpoint responses to maintain genome integrity.  相似文献   

15.
Intracellular deoxyribonucleoside triphosphate (dNTP) pools must be tightly regulated to preserve genome integrity. Indeed, alterations in dNTP pools are associated with increased mutagenesis, genomic instability and tumourigenesis. However, the mechanisms by which altered or imbalanced dNTP pools affect DNA synthesis remain poorly understood. Here, we show that changes in intracellular dNTP levels affect replication dynamics in budding yeast in different ways. Upregulation of the activity of ribonucleotide reductase (RNR) increases elongation, indicating that dNTP pools are limiting for normal DNA replication. In contrast, inhibition of RNR activity with hydroxyurea (HU) induces a sharp transition to a slow-replication mode within minutes after S-phase entry. Upregulation of RNR activity delays this transition and modulates both fork speed and origin usage under replication stress. Interestingly, we also observed that chromosomal instability (CIN) mutants have increased dNTP pools and show enhanced DNA synthesis in the presence of HU. Since upregulation of RNR promotes fork progression in the presence of DNA lesions, we propose that CIN mutants adapt to chronic replication stress by upregulating dNTP pools.  相似文献   

16.
The T4 gp59 protein is the major accessory protein of the phage's replicative DNA helicase, gp41. gp59 helps load gp41 at DNA replication forks by promoting its assembly onto single-stranded (ss) DNA covered with cooperatively bound molecules of gp32, the T4 single-strand DNA binding protein (ssb). A gp59-gp32-ssDNA ternary complex is an obligatory intermediate in this helicase loading mechanism. Here, we characterize the properties of gp59-gp32-ssDNA complexes and reveal some of the biochemical interactions that occur within them. Our results indicate the following: (i) gp59 is able to co-occupy ssDNA pre-saturated with either gp32 or gp32-A (a truncated gp32 species lacking interactions with gp59); (ii) gp59 destabilizes both gp32-ssDNA and (gp32-A)-ssDNA interactions; (iii) interactions of gp59 with the A-domain of gp32 alter the ssDNA-binding properties of gp59; and (iv) gp59 organizes gp32-ssDNA versus (gp32-A)-ssDNA into morphologically distinct complexes. Our results support a model in which gp59-gp32 interactions are non-essential for the co-occupancy of both proteins on ssDNA but are essential for the formation of structures competent for helicase assembly. The data argue that specific "cross-talk" between gp59 and gp32, involving conformational changes in both, is a key feature of the gp41 helicase assembly pathway.  相似文献   

17.
Nucleoside-diphosphate (NDP) kinase (NTP:nucleoside-diphosphate phosphotransferase) catalyzes the reversible transfer of gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates through an invariant histidine residue. It has been reported that the high-energy phosphorylated enzyme intermediate exhibits a protein phosphotransferase activity toward the protein histidine kinases CheA and EnvZ, members of the two-component signal transduction systems in bacteria. Here we demonstrate that the apparent protein phosphotransferase activity of NDP kinase occurs only in the presence of ADP, which can mediate the phosphotransfer from the phospho-NDP kinase to the target enzymes in catalytic amounts (approximately 1 nm). These findings suggest that the protein kinase activity of NDP kinase is probably an artifact attributable to trace amounts of contaminating ADP. Additionally, we show that Escherichia coli NDP kinase, like its human homologue NM23-H2/PuF/NDP kinase B, can bind and cleave DNA. Previous in vivo functions of E. coli NDP kinase in the regulation of gene expression that have been attributed to a protein phosphotransferase activity can be explained in the context of NDP kinase-DNA interactions. The conservation of the DNA binding and DNA cleavage activities between human and bacterial NDP kinases argues strongly for the hypothesis that these activities play an essential role in NDP kinase function in vivo.  相似文献   

18.
The human DRnm23 gene was identified by differential screening of a cDNA library obtained from chronic myeloid leukaemia-blast crisis primary cells. The over-expression of this gene inhibits differentiation and induces the apoptosis of myeloid precursor cell lines. We overproduced in bacteria a truncated form of the encoded protein lacking the first 17 N-terminal amino acids. This truncated protein was called nucleoside diphosphate (NDP) kinase CDelta. NDP kinase CDelta had similar kinetic properties to the major human NDP kinases A and B, but was significantly more stable to denaturation by urea and heat. Analysis of denaturation by urea, using size exclusion chromatography, indicated unfolding without the dissociation of subunits, whereas renaturation occurred via a folded monomer. The stability of the protein depended primarily on subunit interactions. Homology modelling of the structure of NDP kinase CDelta, based on the crystal structure of NDP kinase B, indicated that NDP kinase CDelta had several additional stabilizing interactions. The overall structure of the two enzymes appears to be identical because NDP kinase CDelta readily formed mixed hexamers with NDP kinase A. It is possible that mixed hexamers can be observed in vivo.  相似文献   

19.
Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox-active cofactor in many biological processes, including DNA replication and repair. Eukaryotic ribonucleotide reductases (RNRs) are Fe-dependent enzymes that catalyze deoxyribonucleoside diphosphate (dNDP) synthesis. We show here that the levels of the Sml1 protein, a yeast RNR large-subunit inhibitor, specifically decrease in response to both nutritional and genetic Fe deficiencies in a Dun1-dependent but Mec1/Rad53- and Aft1-independent manner. The decline of Sml1 protein levels upon Fe starvation depends on Dun1 forkhead-associated and kinase domains, the 26S proteasome, and the vacuolar proteolytic pathway. Depletion of core components of the mitochondrial iron-sulfur cluster assembly leads to a Dun1-dependent diminution of Sml1 protein levels. The physiological relevance of Sml1 downregulation by Dun1 under low-Fe conditions is highlighted by the synthetic growth defect observed between dun1Δ and fet3Δ fet4Δ mutants, which is rescued by SML1 deletion. Consistent with an increase in RNR function, Rnr1 protein levels are upregulated upon Fe deficiency. Finally, dun1Δ mutants display defects in deoxyribonucleoside triphosphate (dNTP) biosynthesis under low-Fe conditions. Taken together, these results reveal that the Dun1 checkpoint kinase promotes RNR function in response to Fe starvation by stimulating Sml1 protein degradation.  相似文献   

20.
Bacteriophage T4 UvsY is a recombination mediator protein that promotes assembly of the UvsX-ssDNA presynaptic filament. UvsY helps UvsX to displace T4 gene 32 protein (gp32) from ssDNA, a reaction necessary for proper formation of the presynaptic filament. Here we use DNA stretching to examine UvsY interactions with single DNA molecules in the presence and absence of gp32 and a gp32 C-terminal truncation (*I), and show that in both cases UvsY is able to destabilize gp32-ssDNA interactions. In these experiments UvsY binds more strongly to dsDNA than ssDNA due to its inability to wrap ssDNA at high forces. To support this hypothesis, we show that ssDNA created by exposure of stretched DNA to glyoxal is strongly wrapped by UvsY, but wrapping occurs only at low forces. Our results demonstrate that UvsY interacts strongly with stretched DNA in the absence of other proteins. In the presence of gp32 and *I, UvsY is capable of strongly destabilizing gp32-DNA complexes in order to facilitate ssDNA wrapping, which in turn prepares the ssDNA for presynaptic filament assembly in the presence of UvsX. Thus, UvsY mediates UvsX binding to ssDNA by converting rigid gp32-DNA filaments into a structure that can be strongly bound by UvsX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号