首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ulrike Jehn  Klaus Zetsche 《Planta》1988,173(1):58-60
Cyanelles isolated from the alga Cyanophora paradoxa Korschikoff synthesized cyanelle proteins in vitro. This synthesis was stimulated by light and totally inhibited by chloramphenicol. Cycloheximide had only a small inhibitory effect. Electrophoretic separation of the labelled soluble cyanelle proteins yielded at least 20 discrete polypeptides. The RNA isolated from the cyanelles and the whole cells was successfully translated in a rabbit reticulocyte-lysate system.Abbreviations poly(A)-RNA, poly(A)+RNA nonadenylated, polyadenylated RNA; - SDS sodium dodecyl sulfate  相似文献   

2.
When 35%-acetone extract of spinach chloroplasts was separated by SDS-PAGE, ferredoxin-NADP reductase (FNR) appeared as a single band at a molecular mass of 35 kDa. After the polypeptides on the SDS-PAGE plate were electroblotted onto PVDF membrane, the FNR band was cut out and analyzed for N-terminal structure in a gas-phase protein sequencer. Two different FNR peptides were identified: one with glutamine at its N-terminus (Gln-FNR) and the other with -pyroglutamic acid (tFNR) fraction was extracted from chloroplasts with their loosely bound FNR (lFNR) fraction removed in advance. The tFNR fraction contained Gln-FNR only. The Gln-FNR could be highly purified by affinity chromatography using a ferredoxin column. The purified Gln-FNR was digested with arginyl endopeptidase for peptide mapping and partial sequence analysis. Primary structure of Gln-FNR differed from that of lFNR loosely bound FNR - tFNR tightly bound FNR - -pyroglutamic acid at N-terminus  相似文献   

3.
Ferredoxin-NADP+ oxidoreductase (FNR) catalyzing the terminal step of the linear photosynthetic electron transport was purified from the cyanobacterium Spirulina platensis and the red alga Cyanidium caldarium. FNR of Spirulina consisted of three domains (CpcD-like domain, FAD-binding domain, and NADP+-binding domain) with a molecular mass of 46 kDa and was localized in either phycobilisomes or thylakoid membranes. The membrane-bound FNR with 46 kDa was solublized by NaCl and the solublized FNR had an apparent molecular mass of 90 kDa. FNR of Cyanidium consisted of two domains (FAD-binding domain and NADP+-binding domain) with a molecular mass of 33 kDa. In Cyanidium, FNR was found on thylakoid membranes, but there was no FNR on phycobilisomes. The membrane-bound FNR of Cyanidium was not solublized by NaCl, suggesting the enzyme is tightly bound in the membrane. Although both cyanobacteria and red algae are photoautotrophic organisms bearing phycobilisomes as light harvesting complexes, FNR localization and membrane-binding characteristics were different. These results suggest that FNR binding to phycobilisomes is not characteristic for all phycobilisome retaining oxygenic photosynthetic organisms, and that the rhodoplast of red algae had possibly originated from a cyanobacterium ancestor, whose FNR lacked the CpcD-like domain.  相似文献   

4.
Summary The 5S ribosomal RNAs from the cell cytoplasm and cyanelle (photosynthetic organelle) ofCyanophora paradoxa have been isolated and sequenced. The cellular and cyanelle 5S rRNAs were 119 and 118 nucleotides in length, respectively. Both RNAs exhibited typical 5S secondary structure, but the primary sequence of the cellular species was clearly eukaryotic in nature, while that of the organellar species was prokaryotelike. The primary sequence of the cyanellar 5S rRNA was most homologous to cyanobacterial 5S sequences, yet possessed secondary-structural features characteristic of higher-plant chloroplast 5S rRNAs. Both sequence comparison and structural analysis indicated an evolutionary position for cyanelle 5S rRNA intermediate between blue-green alga and chloroplast 5S rRNAs.Contribution from the Department of Biochemistry, School of Agriculture and Life Sciences and School of Physical and Mathematical Sciences, North Carolina State University, Raleigh, North Carolina. This is paper no. 10259 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina 27695-7601, USA  相似文献   

5.
From Bacillus subtilis cell extracts, ferredoxin-NADP+ reductase (FNR) was purified to homogeneity and found to be the yumC gene product by N-terminal amino acid sequencing. YumC is a 94-kDa homodimeric protein with one molecule of non-covalently bound FAD per subunit. In a diaphorase assay with 2,6-dichlorophenol-indophenol as electron acceptor, the affinity for NADPH was much higher than that for NADH, with Km values of 0.57 M vs >200 M. Kcat values of YumC with NADPH were 22.7 s–1 and 35.4 s–1 in diaphorase and in a ferredoxin-dependent NADPH-cytochrome c reduction assay, respectively. The cell extracts contained another diaphorase-active enzyme, the yfkO gene product, but its affinity for ferredoxin was very low. The deduced YumC amino acid sequence has high identity to that of the recently identified Chlorobium tepidum FNR. A genomic database search indicated that there are more than 20 genes encoding proteins that share a high level of amino acid sequence identity with YumC and which have been annotated variously as NADH oxidase, thioredoxin reductase, thioredoxin reductase-like protein, etc. These genes are found notably in gram-positive bacteria, except Clostridia, and less frequently in archaea and proteobacteria. We propose that YumC and C. tepidum FNR constitute a new group of FNR that should be added to the already established plant-type, bacteria-type, and mitochondria-type FNR groups.  相似文献   

6.
The complete nucleotide sequence of the petH gene encoding ferredoxin-NADP+ reductase from the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7119 has been determined. The encoded polypeptide is 136 amino acids longer than the enzyme obtained after purification to homogeneity. The extended N-terminal domain consists of 80 amino acids which shows homology to the CpcD phycobilisome linker polypeptide, through which FNR might be anchored to the thylakoid-bound phycobilisomes. A 56 amino acid interdomain fragment is found which could be a target for proteolysis.  相似文献   

7.
8.
Substitutional bias confounds inference of cyanelle origins from sequence data   总被引:10,自引:0,他引:10  
Summary Available molecular and biochemical data offer conflicting evidence for the origin of the cyanelle of Cyanophora paradoxa. We show that the similarity of cyanelle and green chloroplast sequences is probably a result of these two lineages independently developing the same pattern of directional nucleotide change (substitutional bias). This finding suggests caution should be exercised in the interpretation of nucleotide sequence analyses that appear to favor the view of a common endosymbiont for the cyanelle and chlorophyll-b-containing chloroplasts. The data and approaches needed to resolve the issue of cyanelle origins are discussed. Our findings also have general implications for phylogenetic inference under conditions where the base compositions (compositional bias) of the sequences analyzed differ. Offprint requests to: C.J. Howe  相似文献   

9.
The cyanelle from the photosynthetic biflagellate protist Cyanophora paradoxa has been studied in terms of its photosynthetic properties. Structurally, the cyanelle resembles unicellular cyanobacteria. The cyanelle is readily released from the host cell by means of the French press. The isolated cyanelle shows typical photosystem I and photosystem II activities as well as phenazine methosulfate-mediated photophosphorylation. The kinetic parameters Km and Vmax were determined for CO2 fixation in the cyanelle and cells of C. paradoxa and compared to a cyanobacterium. The determined values were not much different, although the cyanobacterium had a significantly greater rate of CO2 fixation, and the cyanelle was least active in this regard. Photosystem I chlorophyll-protein complex is readily isolated from the thylakoid membrane. In all these respects, the photosynthetic apparatus of the cyanelle resembles that of cyanobacteria. No nitrogen fixation activity was observed. Attempts to regenerate the isolated cyanelle were not successful, but in some cases, an unidentified cyanobacterium grew up in standing cultures of C. paradoxa cyanelles. Buoyant density data indicate that the strain of C. paradoxa we have investigated differs from that employed by others, since our strain shows a value of 1.716 grams per cubic centimeter and others report values of 1.695 and 1.691.  相似文献   

10.
11.
12.
Previous studies in our laboratory have shown that tentoxin prevents the incorporation of polyphenol oxidase (PPO), a nuclearly-coded protein, into the chloroplasts of sensitive species. In this study, we show, by comparison of electrophoretically separated isozymes, that ferredoxin-NADP+ reductase (FNR) is nuclearly coded in Nicotiana. Electrophoresis of FNR isozymes from tentoxin treated seedlings of a sensitive and a resistant species demonstrated that, unlike PPO, ferredoxin-NADP+ reductase was unaffected by tentoxin treatment. These data indicate that tentoxin selectively inhibits transport of cytoplasmically synthesized proteins into the chloroplast, and does not produce a generalized disruption of cellular integration.This research was supported, in part, by funding under cooperative agreement number 58-7B30-3-548, and is published with the approval of the Director of Arkansas Agr. Exp. Stn. Mention of a trademark, proprietary product, or vendor does not constitute a guarantee or warranty of the product by the US Dep. Agric. or cooperating agencies and does not imply its approval to the exclusion of other products or vendors that may also be suitable.  相似文献   

13.
Nucleotide sequence of the cyanelle genome fromCyanophora paradoxa   总被引:3,自引:3,他引:0  
The complete nucleotide sequence of the cyanelle genome ofCyanophora paradoxa Pringsheim strain LB 555 was determined (accession number U30821). The circular molecule is 135,599 base pairs in length. The physical map of this DNA molecule is shown along with identified genes and open reading frames.  相似文献   

14.
Thylakoid membranes and Photosystem I (PS I) complexes were isolated from a glaucocystophyte, Cyanophora paradoxa, which is thought to have the most primitive ‘plastids’, and the proteins related to PS I were examined. The intrinsic light-harvesting chlorophyll protein complexes of PS I (LHC I) were not detected by an immunological method. The PS I complexes consisted of at least eight low-molecular-mass proteins in addition to PS I reaction center proteins. The N-terminal sequence of the PsaD protein has higher homology to that of Chlamydomonas reinhardtii and land plants, than to that of other algae or cyanobacteria. On the other hand, the PsaL sequence has the highest homology to those of cyanobacteria. Taking into account the other sequences of PS I components whose genes are encoded in the cyanelle genome, and the fact that LHC I is not detected, it is concluded that PS I of C. paradoxa has chimeric characteristics of both ‘green’ lineages and cyanobacteria. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Complementary DNA sequences were isolated from a library of cloned Arabidopsis leaf mRNA sequences in gt10 that encoded a 21.7 kDa polypeptide (CaBP-22), which shared 66% amino acid sequence identity with Arabidopsis calmodulin. The putative Ca2+-binding domains of CaBP-22 and calmodulin, however, were more conserved and shared 79% sequence identity. Ca2+ binding by CaBP-22, which was inferred from its amino acid sequence similarity with calmodulin, was demonstrated indirectly by Ca2+-induced mobility shifting of in vitro translated CaBP-22 during SDS-polyacrylamide gel electrophoresis. CaBP-22 is encoded by a ca. 0.9 kb mRNA that was detected by northern blotting of leaf poly(A)+ RNA; this mRNA was slightly larger than the 809 bp CaBP-22 cDNA insert, indicating that the deduced amino acid sequence of CaBP-22 is near full-length. CaBP-22 mRNA was detected in RNA fractions isolated from leaves of both soil-grown and hydroponically grown Arabidopsis, but below the limits of detection in RNA isolated from roots, and developing siliques. Thus, CaBP-22 represents a new member of the EF-hand family of Ca2+-binding proteins with no known animal homologue and may participate in transducing Ca2+ signals to a specific subset of response elements.  相似文献   

16.
17.
With a homologous gene region we successfully isolated a Na+/H+ antiporter gene from a halophytic plant, Atriplex gmelini, and named it AgNHX1. The isolated cDNA is 2607 bp in length and contains one open reading frame, which comprises 555 amino acid residues with a predicted molecular mass of 61.9 kDa. The amino acid sequence of the AgNHX1 gene showed more than 75% identity with those of the previously isolated NHX1 genes from glycophytes, Arabidopsis thaliana and Oryza sativa. The migration pattern of AgNHX1 was shown to correlate with H+-pyrophosphatase and not with P-type H+-ATPase, suggesting the localization of AgNHX1 in a vacuolar membrane. Induction of the AgNHX1 gene was observed by salt stress at both mRNA and protein levels. The expression of the AgNHX1 gene in the yeast mutant, which lacks the vacuolar-type Na+/H+ antiporter gene (NHX1) and has poor viability under the high-salt conditions, showed partial complementation of the NHX1 functions. These results suggest the important role of the AgNHX1 products for salt tolerance.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号