共查询到20条相似文献,搜索用时 0 毫秒
1.
L.Heleen P Caro Gertien J Smits Piet van Egmond John W Chapman Frans M Klis 《FEMS microbiology letters》1998,161(2):345-349
The yeast cell wall consists of an internal skeletal layer and an outside protein layer. The synthesis of both β-1,3-glucan and chitin, which together form the cell wall skeleton, is cell cycle-regulated. We show here that the expression of five cell wall protein-encoding genes (CWP1, CWP2, SED1, TIP1 and TIR1) is also cell cycle-regulated. TIP1 is expressed in G1 phase, CWP1, CWP2 and TIR1 are expressed in S/G2 phase, and SED1 in M phase. The data suggest that these proteins fulfil distinct functions in the cell wall. 相似文献
2.
3.
4.
Identification of proteins whose synthesis is modulated during the cell cycle of Saccharomyces cerevisiae 下载免费PDF全文
We examined the synthesis and turnover of individual proteins in the Saccharomyces cerevisiae cell cycle. Proteins were pulse-labeled with radioactive isotope (35S or 14C) in cells at discrete cycle stages and then resolved on two-dimensional gels and analyzed by a semiautomatic procedure for quantitating gel electropherogram-autoradiographs. The cells were obtained by one of three methods: (i) isolation of synchronous subpopulations of growing cells by zonal centrifugation.; (ii) fractionation of pulse-labeled steady-state cultures according to cell age; and (iii) synchronization of cells with the mating pheromone, alpha-factor. In confirmation of previous studies, we found that the histones H4, H2A, and H2B were synthesized almost exclusively in the late G1 and early S phases. In addition, we identified eight proteins whose rates of synthesis were modulated in the cell cycle, and nine proteins (of which five, which may well be related, were unstable, with half-lives of 10 to 15 min) that might be regulated in the cell cycle by periodic synthesis, modification, or degradation. Based on the time of maximal labeling in the cell cycle and on experiments with alpha-factor and hydroxyurea, we assigned the cell cycle proteins to two classes: proteins in class I were labeled principally in early G1 phase and at a late stage of the cycle, whereas those in class II were primarily synthesized at times ranging from late G1 to mid S phase. At least one major control point for the cell cycle proteins occurred between "start" and early S phase. A set of stress-responsive proteins was also identified and analyzed. The rates of synthesis of these proteins were affected by certain perturbations that resulted during selection of synchronous cell populations and by heat shock. 相似文献
5.
Ribonucleotide reductase activity during the cell cycle of Saccharomyces cerevisiae 总被引:13,自引:0,他引:13
A fluorometric amino acid analyzer using fluorescamine for the assay of the full array of natural amino acids including proline on a single column is reported. The proline determination was carried out by specific introduction of a solution of N-chlorosuccinimide into the flow system. Single column fluorometric amino acid analysis was carried out in a significantly shorter time and with a sensitivity almost two orders of magnitude greater than that obtained with a commerical colorimetric ninhydrin amino acid analyzer. 相似文献
6.
Cell buoyant densities of the budding yeast Saccharomyces cerevisiae were determined for rapidly growing asynchronous and synchronous cultures by equilibrium sedimentation in Percoll gradients. The average cell density in exponentially growing cultures was 1.1126 g/ml, with a range of density variation of 0.010 g/ml. Densities were highest for cells with buds about one-fourth the diameter of their mother cells and lowest when bud diameters were about the same as their mother cells. In synchronous cultures inoculated from the least-dense cells, there was no observable perturbation of cell growth: cell numbers increased without lag, and the doubling time (66 min) was the same as that for the parent culture. Starting from a low value at the beginning of the cycle, cell buoyant density oscillated between a maximum density near midcycle (0.4 generations) and a minimum near the end of the cycle (0.9 generations). The pattern of cyclic variation of buoyant density was quantitatively determined from density measurements for five cell classes, which were categorized by bud diameter. The observed variation in buoyant density during the cell cycle of S. cerevisiae contrasts sharply with the constancy in buoyant density observed for cells of Escherichia coli, Chinese hamster cells, and three murine cell lines. 相似文献
7.
8.
9.
A delay in the Saccharomyces cerevisiae cell cycle that is induced by a dicentric chromosome and dependent upon mitotic checkpoints. 下载免费PDF全文
Dicentric chromosomes are genetically unstable and depress the rate of cell division in Saccharomyces cerevisiae. We have characterized the effects of a conditionally dicentric chromosome on the cell division cycle by using microscopy, flow cytometry, and an assay for histone H1 kinase activity. Activating the dicentric chromosome induced a delay in the cell cycle after DNA replication and before anaphase. The delay occurred in the absence of RAD9, a gene required to arrest cell division in response to DNA damage. The rate of dicentric chromosome loss, however, was elevated in the rad9 mutant. A mutation in BUB2, a gene required for arrest of cell division in response to loss of microtubule function, diminished the delay. Both RAD9 and BUB2 appear to be involved in the cellular response to a dicentric chromosome, since the conditionally dicentric rad9 bub2 double mutant was highly inviable. We conclude that a dicentric chromosome results in chromosome breakage and spindle aberrations prior to nuclear division that normally activate mitotic checkpoints, thereby delaying the onset of anaphase. 相似文献
10.
J Van Doorn M E Scholte P W Postma R Van Driel K Van Dam 《Journal of general microbiology》1988,134(3):785-790
Synchronous cultures of Saccharomyces cerevisiae prepared by selection of small unbudded cells from an elutriating rotor were used to measure trehalase activity during the cell cycle. After the small cells had been removed from the rotor, the remainder was used to prepare asynchronous control cultures. Both synchronous and control cultures were studied for two cell cycles. In asynchronous cultures the trehalase activity of crude cell lysates rose continuously. In synchronized populations trehalase activity increased from the beginning of budding onwards. However, around the period of cell division the enzyme activity dropped rapidly but transiently by more than 5-fold. The same changes were found during the second budding cycle. Measurements of invertase and glucose-6-phosphate dehydrogenase activities in the same synchronous and asynchronous cultures revealed a continuous increase for both enzymes. Incubation of cell lysates with cAMP-dependent protein kinase before assaying for trehalase resulted in a 2-fold enhancement of enzyme activity in asynchronous control cultures. In synchronized cells this treatment also led to a significant stimulation of trehalase activity, and largely abolished the cell-cycle-dependent oscillatory pattern of enzyme activity. These results suggest that the activity of trehalase during the cell cycle is regulated, presumably at the post-translational level, by a phosphorylation-dephosphorylation mechanism. 相似文献
11.
12.
McCaig C Potter L Abramczyk O Murray JT 《Biochemical and biophysical research communications》2011,(2):227-234
The tumour metastasis suppressor, N-myc Downstream Regulated Gene (NDRG) 1, is a by the protein kinases SGK1 and GSK3β, but the relevance of its phosphorylation remains unclear. Analysis of HCT116 cells, either proficient or deficient for p53 revealed NDRG1 protein expression and phosphorylation by SGK1 was increased basally in p53-deficient cells. Treatment with the cell cycle inhibitors, aphidicolin or nocodazole also revealed increased NDRG1 phosphorylation in p53-deficient cells. Finally, phosphorylated NDRG1 was found to co-localise with γ-tubulin on centromeres and also to the cleavage furrow during cytokinesis. Taken together, this work demonstrates that NDRG1 phosphorylation, by the protein kinase SGK1, is temporally and spatially controlled during the cell cycle, suggesting a role for NDRG1 in successful mitosis. 相似文献
13.
Polyphosphate is involved in cell cycle progression and genomic stability in Saccharomyces cerevisiae 下载免费PDF全文
Samuel Bru Joan Marc Martínez‐Laínez Sara Hernández‐Ortega Eva Quandt Javier Torres‐Torronteras Ramón Martí David Canadell Joaquin Ariño Sushma Sharma Javier Jiménez Josep Clotet 《Molecular microbiology》2016,101(3):367-380
Polyphosphate (polyP) is a linear chain of up to hundreds of inorganic phosphate residues that is necessary for many physiological functions in all living organisms. In some bacteria, polyP supplies material to molecules such as DNA, thus playing an important role in biosynthetic processes in prokaryotes. In the present study, we set out to gain further insight into the role of polyP in eukaryotic cells. We observed that polyP amounts are cyclically regulated in Saccharomyces cerevisiae, and those mutants that cannot synthesise (vtc4Δ) or hydrolyse polyP (ppn1Δ, ppx1Δ) present impaired cell cycle progression. Further analysis revealed that polyP mutants show delayed nucleotide production and increased genomic instability. Based on these findings, we concluded that polyP not only maintains intracellular phosphate concentrations in response to fluctuations in extracellular phosphate levels, but also muffles internal cyclic phosphate fluctuations, such as those produced by the sudden demand of phosphate to synthetize deoxynucleotides just before and during DNA duplication. We propose that the presence of polyP in eukaryotic cells is required for the timely and accurate duplication of DNA. 相似文献
14.
The Saccharomyces cerevisiae RNase mitochondrial RNA processing is critical for cell cycle progression at the end of mitosis 总被引:2,自引:0,他引:2
We have identified a cell cycle delay in Saccharomyces cerevisiae RNase MRP mutants. Mutants delay with large budded cells, dumbbell-shaped nuclei, and extended spindles characteristic of "exit from mitosis" mutants. In accord with this, a RNase MRP mutation can be suppressed by overexpressing the polo-like kinase CDC5 or by deleting the B-type cyclin CLB1, without restoring the MRP-dependent rRNA-processing step. In addition, we identified a series of genetic interactions between RNase MRP mutations and mutations in CDC5, CDC14, CDC15, CLB2, and CLB5. As in most "exit from mitosis" mutants, levels of the Clb2 cyclin were increased. The buildup of Clb2 protein is not the result of a defect in the release of the Cdc14 phosphatase from the nucleolus, but rather the result of an increase in CLB2 mRNA levels. These results indicate a clear role of RNase MRP in cell cycle progression at the end of mitosis. Conservation of this function in humans may explain many of the pleiotropic phenotypes of cartilage hair hypoplasia. 相似文献
15.
16.
A new pair of B-type cyclins from Saccharomyces cerevisiae that function early in the cell cycle. 总被引:9,自引:3,他引:9 下载免费PDF全文
Two new B-type cyclin genes from Saccharomyces cerevisiae, called CLB5 and CLB6, are located in a tail to tail arrangement adjacent to the G2/M phase promoting cyclins CLB2 and CLB1, respectively. These genomic cyclin arrays are flanked by tRNAs and repeated sequences of Ty elements suggesting an intrachromosomal gene duplication followed by an interchromosomal gene duplication. Based on their deduced protein sequence the CLB5 and CLB6 genes form a new pair of B-type cyclins. They are most related to each other and then to the deduced protein sequence of their adjacent genes CLB1 and CLB2. Both genes are periodically expressed, peaking early in the cell cycle. Loss of function mutants are viable, but clb5- mutants exhibit a delay in S phase whereas clb6- mutants show a delay in late G1 and/or S phase. The clb5 mutant phenotype is somewhat more pronounced in a double null mutant. Both cyclins have the potential to interact with the p34CDC28 kinase in vivo. 相似文献
17.
18.
Regulation of Saccharomyces cerevisiae CDC7 function during the cell cycle. 总被引:3,自引:0,他引:3 下载免费PDF全文
The yeast Cdc7 function is required for the G1/S transition and is dependent on passage through START, a point controlled by the Cdc28/cdc2/p34 protein kinase. CDC7 encodes a protein kinase activity, and we now show that this kinase activity varies in the cell cycle but that protein levels appear to remain constant. We present several lines of evidence that periodic activation of CDC7 kinase is at least in part through phosphorylation. First, the kinase activity of the Cdc7 protein is destroyed by dephosphorylation of the protein in vitro with phosphatase. Second, Cdc7 protein is hypophosphorylated and inactive as a kinase in extracts of cells arrested at START but becomes active and maximally phosphorylated subsequent to passage through START. The phosphorylation pattern of Cdc7 protein is complex. Phosphopeptide mapping reveals four phosphopeptides in Cdc7 prepared from asynchronous yeast cells. Both autophosphorylation and phosphorylation in trans appear to contribute to this pattern. Autophosphorylation is shown to occur by using a thermolabile Cdc7 protein. A protein in yeast extracts can phosphorylate and activate Cdc7 protein made in Escherichia coli, and phosphorylation is thermolabile in cdc28 mutant extracts. Cdc7 protein carrying a serine to alanine change in the consensus recognition site for Cdc28 kinase shows an altered phosphopeptide map, suggesting that this site is important in determining the overall Cdc7 phosphorylation pattern. 相似文献
19.
Quantitation of alpha-factor internalization and response during the Saccharomyces cerevisiae cell cycle. 下载免费PDF全文
The alpha-factor pheromone binds to specific cell surface receptors on Saccharomyces cerevisiae a cells. The pheromone is then internalized, and cell surface receptors are down-regulated. At the same time, a signal is transmitted that causes changes in gene expression and cell cycle arrest. We show that the ability of cells to internalize alpha-factor is constant throughout the cell cycle, a cells are also able to respond to pheromone throughout the cycle even though there is cell cycle modulation of the expression of two pheromone-inducible genes, FUS1 and STE2. Both of these genes are expressed less efficiently near or just after the START point of the cell cycle in response to alpha-factor. For STE2, the basal level of expression is modulated in the same manner. 相似文献