首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A calcyclin-associated protein with an apparent molecular weight of 50,000 (CAP-50) was purified from rabbit lung. The procedure included ammonium sulfate precipitation, anion and cation ion-exchange, and calcyclin affinity chromatographies. Interestingly, partial amino acid sequences of lysyl-endpeptidase-digested fragments indicated that CAP-50 was a member of the Ca2+/phospholipid-binding proteins, the annexin family. The sequence of a proteolytic peptide with Staphylococcus aureus V8 protease on NH2-terminal region is not homologous with any other annexin family proteins. Phospholipid binding studies showed that CAP-50 bound to phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidic acid-containing vesicles, in a Ca(2+)-dependent manner. In the presence of Ca2+/calcyclin, CAP-50 formed a complex with calcyclin and bound to the PS-containing vesicles. The apparent Kd value of calcyclin for CAP-50 was calculated to be 1.61 x 10(-6) M. Zero-length cross-linking studies indicated that 1 mol of CAP-50 bound to an equimolar unit of calcyclin. CAP-50 inhibited the phospholipase A2 activity, dose-dependently (IC50 = 0.2 microM), however, calcyclin did not alter the inhibitory effect. With the 125I-calcyclin gel overlay method, calcyclin bound tightly to CAP-50 in a Ca(2+)-dependent manner after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that rabbit lung CAP-50 is a newly identified member of the annexin family. Ca2+/calcyclin apparently regulates the function of CAP-50 on cytosolic face of the plasma membrane.  相似文献   

2.
Calcyclin is a homodimeric protein belonging to the S100 subfamily of EF-hand Ca(2+)-binding proteins, which function in Ca(2+) signal transduction processes. A refined high-resolution solution structure of Ca(2+)-bound rabbit calcyclin has been determined by heteronuclear solution NMR. In order to understand the Ca(2+)-induced structural changes in S100 proteins, in-depth comparative structural analyses were used to compare the apo and Ca(2+)-bound states of calcyclin, the closely related S100B, and the prototypical Ca(2+)-sensor protein calmodulin. Upon Ca(2+) binding, the position and orientation of helix III in the second EF-hand is altered, whereas the rest of the protein, including the dimer interface, remains virtually unchanged. This Ca(2+)-induced structural change is much less drastic than the "opening" of the globular EF-hand domains that occurs in classical Ca(2+) sensors, such as calmodulin. Using homology models of calcyclin based on S100B, a binding site in calcyclin has been proposed for the N-terminal domain of annexin XI and the C-terminal domain of the neuronal calcyclin-binding protein. The structural basis for the specificity of S100 proteins is discussed in terms of the variation in sequence of critical contact residues in the common S100 target-binding site.  相似文献   

3.
Using Ca(2+)-dependent affinity chromatography on a synthetic compound (W-77)-coupled Sepharose 4B column, we purified two different Ca(2+)-binding proteins from rabbit lung extracts. The molecular weights of these proteins were estimated to be 17 kDa (calmodulin) and 10 kDa, respectively. The partial amino acid sequence of the 10-kDa protein revealed that it has two EF-hand structures. In addition, the 10-kDa protein was highly homologous (91%) to the product of growth-regulated gene, 2A9 (calcyclin). The Ca(2+)-binding property of the 10-kDa protein was observed by a change in the uv difference spectrum. Equilibrium dialysis showed that 1 mol of the 10-kDa protein bound to 2.04 +/- 0.05 mol of Ca2+ in the presence of 10(-4) M Ca2+. However, the protein failed to activate calmodulin-dependent enzymes such as Ca2+/CaM kinase II, myosin light chain kinase, and phosphodiesterase. We found that a 50-kDa cytosolic protein of the rabbit lung, intestine, and spleen bound to the 10-kDa protein, in a Ca(2+)-dependent manner. The distribution of calcyclin and calcyclin binding proteins was unique and seems to differ from that of calmodulin and calmodulin-binding proteins. Thus, calcyclin probably plays a physiological role through its binding proteins for the Ca(2+)-dependent cellular response.  相似文献   

4.
Using Ca(2+)-dependent affinity chromatography on a synthetic compound (W-7)-coupled Sepharose column, three distinct Ca(2+)-binding proteins have been identified in human platelets. The molecular mass of these three distinct proteins was estimated to be 10, 10.5, 17 kDa, respectively, by polyacrylamide gel electrophoresis in the presence of SDS. The partial amino acid sequence revealed these proteins have EF-hand structures and high homology to the predicted proteins, calcyclin, calvasculin, and calmodulin. Calcyclin and calvasculin have been considered as probably having roles in the control of cell proliferation, but the existence of these two proteins in platelets suggests that they have other intracellular functions related to the Ca(2+)-signal transduction system.  相似文献   

5.
6.
The EF-hand protein with a helix-loop-helix Ca(2+) binding motif constitutes one of the largest protein families and is involved in numerous biological processes. To facilitate the understanding of the role of Ca(2+) in biological systems using genomic information, we report, herein, our improvement on the pattern search method for the identification of EF-hand and EF-like Ca(2+)-binding proteins. The canonical EF-hand patterns are modified to cater to different flanking structural elements. In addition, on the basis of the conserved sequence of both the N- and C-terminal EF-hands within S100 and S100-like proteins, a new signature profile has been established to allow for the identification of pseudo EF-hand and S100 proteins from genomic information. The new patterns have a positive predictive value of 99% and a sensitivity of 96% for pseudo EF-hands. Furthermore, using the developed patterns, we have identified zero pseudo EF-hand motif and 467 canonical EF-hand Ca(2+) binding motifs with diverse cellular functions in the bacteria genome. The prediction results imply that pseudo EF-hand motifs are phylogenetically younger than canonical EF-hand motifs. Our prediction of Ca(2+) binding motifs provides not only an insight into the role of Ca(2+) and Ca(2+)-binding proteins in bacterial systems, but also a way to explore and define the role of Ca(2+) in other biological systems (calciomics).  相似文献   

7.
Presynaptic group III metabotropic glutamate receptors (mGluRs) and Ca(2+) channels are the main neuronal activity-dependent regulators of synaptic vesicle release, and they use common molecules in their signaling cascades. Among these, calmodulin (CaM) and the related EF-hand Ca(2+)-binding proteins are of particular importance as sensors of presynaptic Ca(2+), and a multiple of them are indeed utilized in the signaling of Ca(2+) channels. However, despite its conserved structure, CaM is the only known EF-hand Ca(2+)-binding protein for signaling by presynaptic group III mGluRs. Because the mGluRs and Ca(2+) channels reciprocally regulate each other and functionally converge on the regulation of synaptic vesicle release, the mGluRs would be expected to utilize more EF-hand Ca(2+)-binding proteins in their signaling. Here I show that calcium-binding protein 1 (CaBP1) bound to presynaptic group III mGluRs competitively with CaM in a Ca(2+)-dependent manner and that this binding was blocked by protein kinase C (PKC)-mediated phosphorylation of these receptors. As previously shown for CaM, these results indicate the importance of CaBP1 in signal cross talk at presynaptic group III mGluRs, which includes many molecules such as cAMP, Ca(2+), PKC, G protein, and Munc18-1. However, because the functional diversity of EF-hand calcium-binding proteins is extraordinary, as exemplified by the regulation of Ca(2+) channels, CaBP1 would provide a distinct way by which presynaptic group III mGluRs fine-tune synaptic transmission.  相似文献   

8.
Calmodulin is a member of the "EF-hand" family of Ca(2+)-binding proteins. It consists of two homologous globular domains, each containing two helix-loop-helix Ca(2+)-binding sites. To examine the contribution of individual Ca(2+)-binding sites to the Ca(2+)-binding properties of CaM, a series of four site-directed mutants has been studied. In each, the glutamic acid at position 12 in one of the four Ca(2+)-binding loops has been changed to a glutamine. One-dimensional 1H-NMR has been used to monitor Ca(2+)-induced changes in the mutant proteins, and the spectral changes observed for each mutant have been compared to those for wild-type CaM. In this way, the effect of each mutation on both the mutated site and the other Ca(2+)-binding sites has been examined. The mutation of glutamate to glutamine at position 12 in any of the EF-hand Ca(2+)-binding loops greatly decreases the Ca(2+)-binding affinity at that site, yet differs in the overall effects on Ca2+ binding depending on which of the four sites is mutated. When the mutation is in site I, there is only a small decrease in the apparent Ca(2+)-binding affinity of site II, and vice versa. Mutation in either site III or IV results in a large decrease in the apparent Ca(2+)-binding affinities of the partner C-terminal site. In both the N- and C-terminal domains, evidence for altered conformational effects in the partners of mutated sites is presented. In the C-terminus, the conformational consequences of mutating site III or site IV are strikingly different.  相似文献   

9.
The ionized calcium-binding adaptor molecule 1 (Iba1) with 147 amino acid residues has been identified as a calcium-binding protein, expressed specifically in microglia/macrophages, and is expected to be a key factor in membrane ruffling, which is a typical feature of activated microglia. We have determined the crystal structure of human Iba1 in a Ca(2+)-free form and mouse Iba1 in a Ca(2+)-bound form, to a resolution of 1.9 A and 2.1 A, respectively. X-ray structures of Iba1 revealed a compact, single-domain protein with two EF-hand motifs, showing similarity in overall topology to partial structures of the classical EF-hand proteins troponin C and calmodulin. In mouse Iba1, the second EF-hand contains a bound Ca(2+), but the first EF-hand does not, which is often the case in S100 proteins, suggesting that Iba1 has S100 protein-like EF-hands. The molecular conformational change induced by Ca(2+)-binding of Iba1 is different from that found in the classical EF-hand proteins and/or S100 proteins, which demonstrates that Iba1 has an unique molecular switching mechanism dependent on Ca(2+)-binding, to interact with target molecules.  相似文献   

10.
A novel allergenic member of the family of Ca(2+)-binding proteins has been cloned from olive tree pollen. The isolated DNA codes for a protein of 171 amino acid residues, which displays four EF-hand sequence motifs. The encoded protein was overproduced in Escherichia coli and purified. The protein (18? omitted?795 Da), which binds Ca(2+) and IgE antibodies from patients allergic to olive pollen, undergoes Ca(2+)-dependent conformational changes. It is retained on a phenyl-Sepharose column, which indicates the existence of regulatory EF-hand domains. This fact suggests its involvement in Ca(2+)-dependent signal transduction events of the pollen grain. This allergen could be considered as a member of a new subfamily of EF-hand Ca(2+)-binding proteins since it displays a low amino acid sequence similarity with the so far known proteins.  相似文献   

11.
A 50-kDa protein, which binds to the growth-regulated gene (2A9) product, calcyclin in a calcium-dependent manner, was purified from bovine lung. Partial amino acid sequencing of the protein revealed it to be the bovine equivalent of rabbit lung CAP-50 (calcyclin-associated protein, 50 kDa), which is a member of the annexin family and binds to calcyclin in a calcium-dependent manner. Specific polyclonal antibodies to bovine lung CAP-50 were prepared. Comparative studies between CAP-50 and synexin (annexin VII) on the immunoreactivity against anti-CAP-50 antibodies and the ability of binding to calcyclin revealed that CAP-50 was a distinct molecule from synexin. Using specific polyclonal antibodies to bovine lung CAP-50, tissue distribution and subcellular distribution of CAP-50 were investigated. In most rat tissues, except those in the central nervous systems and kidney, CAP-50 is expressed at a high or moderate level. Both studies by subcellular fractionation and by indirect immunofluorescence staining of the rat embryonic fibroblast cell line, 3Y1, revealed that CAP-50 mainly localized in nuclei. Moreover, between the cells at interphase and at mitotic phase, different distributions of CAP-50 were observed. That is, in the cells at interphase, CAP-50 seemed to localize throughout the nucleoplasm. On the other hand, in the cells during mitosis, CAP-50 was concentrated at the loop-like structure around the mitotic apparatus. CAP-50 was found in isolated 3Y1 nuclei lacking outer nuclear membranes, and approximately 50% of CAP-50 was extracted from the nuclei by chelating calcium. Thus, CAP-50, a unique annexin, localizes in nuclei.  相似文献   

12.
The crystal structure of a sarcoplasmic Ca(2+)-binding protein (SCP) from the sandworm Nereis diversicolor has been determined and refined at 2.0 A resolution using restrained least-squares techniques. The two molecules in the crystallographic asymmetric unit, which are related by a non-crystallographic 2-fold axis, were refined independently. The refined model includes all 174 residues and three calcium ions for each molecule, as well as 213 water molecules. The root-mean-square difference in co-ordinates for backbone atoms and calcium ions of the two molecules is 0.51 A. The final crystallographic R-factor, based on 18,959 reflections in the range 2.0 A less than or equal to d less than or equal to 7.0 A, with intensities exceeding 2.0 sigma, is 0.182. Bond lengths and bond angles in the molecules have root-mean-square deviations from ideal values of 0.013 A and 2.2 degrees, respectively. SCP has four distinct domains with the typical helix-loop-helix (EF-hand) Ca(2+)-binding motif, although the second Ca(2+)-binding domain is not functional due to amino acid changes in the loop. The structure shows several unique features compared to other Ca(2+)-binding proteins with four EF-hand domains. The overall structure is highly compact and globular with a predominant hydrophobic core, unlike the extended dumbbell-shaped structure of calmodulin or troponin C. A hydrophobic tail at the COOH terminus adds to the structural stability by packing against a hydrophobic pocket created by the folding of the NH2 and COOH-terminal Ca(2+)-binding domain pairs. The first and second domains show different helix-packing arrangements from any previously described for Ca(2+)-binding proteins.  相似文献   

13.
To obtain site-specific information about individual EF-hand motifs, the EF-hand Ca(2+)-binding loops from site III and site IV of calmodulin (CaM) were inserted separately into a non-Ca(2+)-binding cell adhesion protein, domain 1 of CD2 (denoted as CaM-CD2-III-5G-52 and CaM-CD2-IV-5G-52). Structural analyses using various spectroscopic methods have shown that the host protein CD2 retains its native structure after the insertion of the 12-residue loops. The Tb(3+) fluorescence enhancement upon formation of a Tb(3+)-protein complex and the direct competition by La(3+) and Ca(2+) suggest that native Ca(2+)-binding pockets are formed in both engineered proteins. Moreover, as revealed by NMR, both Ca(2+) and La(3+) specifically interact with the residues at the grafted EF-loop. The CaM-CD2-III-5G-52 has stronger affinities to Ca(2+), Tb(3+) and La(3+) than CaM-CD2-IV-5G-52, indicating differential intrinsic metal-binding affinities of the EF-loops.  相似文献   

14.
Koch M  Fritz G 《The FEBS journal》2012,279(10):1799-1810
S100A2 is an EF-hand calcium ion (Ca(2+))-binding protein that activates the tumour suppressor p53. In order to understand the molecular mechanisms underlying the Ca(2+) -induced activation of S100A2, the structure of Ca(2+)-bound S100A2 was determined at 1.3 ? resolution by X-ray crystallography. The structure was compared with Ca(2+) -free S100A2 and with other S100 proteins. Binding of Ca(2+) to S100A2 induces small structural changes in the N-terminal EF-hand, but a large conformational change in the C-terminal EF-hand, reorienting helix III by approximately 90°. This movement is accompanied by the exposure of a hydrophobic cavity between helix III and helix IV that represents the target protein interaction site. This molecular reorganization is associated with the breaking and new formation of intramolecular hydrophobic contacts. The target binding site exhibits unique features; in particular, the hydrophobic cavity is larger than in other Ca(2+)-loaded S100 proteins. The structural data underline that the shape and size of the hydrophobic cavity are major determinants for target specificity of S100 proteins and suggest that the binding mode for S100A2 is different from that of other p53-interacting S100 proteins. Database Structural data are available in the Protein Data Bank database under the accession number 4DUQ  相似文献   

15.
In bacteria, Ca(2+) is implicated in a wide variety of cellular processes, including the cell cycle and cell division. Dedicated influx and efflux systems tightly control the low cytoplasmic Ca(2+) levels in prokaryotes. Additionally, the growing number of proteins containing various Ca(2+)-binding motifs supports the importance of Ca(2+), which controls various protein functions by affecting protein stability, enzymatic activity or signal transduction. The existence of calmodulin-like proteins (containing EF-hand motifs) in bacteria is a long-standing hypothesis. Analysis of the prokaryotic protein sequences available in the databases has revealed the presence of several calmodulin-like proteins containing two or more authentic EF-hand motifs, suggesting that calmodulin-like proteins could be involved in Ca(2+) regulation in bacteria.  相似文献   

16.
Our understanding of the nature and regulation of receptor-activated Ca(2+) entry in nonexcitable cells has recently undergone a radical change that began with the identification of the stromal interacting molecule proteins (e.g., STIM1) as playing a critical role in the regulation of the capacitative, or store-operated, Ca(2+) entry. As such, current models emphasize the role of STIM1 located in the endoplasmic reticulum membrane, where it senses the status of the intracellular Ca(2+) stores via a luminal N-terminal Ca(2+)-binding EF-hand domain. Dissociation of Ca(2+) from this domain induces the clustering of STIM1 to regions of the ER that lie close to the plasma membrane, where it regulates the activity of the store-operated Ca(2+) channels (e.g., CRAC channels). Thus, the specific dependence on store-depletion, and the role of the Ca(2+)-binding EF-hand domain in this process, are critical to all current models of the action of STIM1 on Ca(2+) entry. However, until recently, the effects of STIM1 on other modes of receptor-activated Ca(2+) entry have not been examined. Surprisingly, we found that STIM1 exerts similar, although not identical, actions on the arachidonic acid-regulated Ca(2+)-selective (ARC) channels-a widely expressed mode of agonist-activated Ca(2+) entry whose activation is completely independent of Ca(2+) store depletion. Regulation of the ARC channels by STIM1 is not only independent of store depletion, but also of the Ca(2+)-binding function of the EF-hand, and translocation of STIM1 to the plasma membrane. Instead, it is the pool of STIM1 that constitutively resides in the plasma membrane that is critical for the regulation of the ARC channels. Thus, ARC channel activity is selectively inhibited by exposure of intact cells to an antibody targeting the extracellular N-terminal domain of STIM1. Similarly, introducing mutations in STIM1 that prevent the N-linked glycosylation-dependent constitutive expression of the protein in the plasma membrane specifically inhibits the activity of the ARC channels without affecting the CRAC channels. These studies demonstrate that STIM1 is a far more universal regulator of Ca(2+) entry pathways than previously assumed, and has multiple, and entirely distinct, modes of action. Precisely how this same protein can act in such separate and specific ways on these different pathways of agonist-activated Ca(2+)entry remains an intriguing, yet currently unresolved, question.  相似文献   

17.
BACKGROUND: The EF-hand family is a large set of Ca(2+)-binding proteins that contain characteristic helix-loop-helix binding motifs that are highly conserved in sequence. Members of this family include parvalbumin and many prominent regulatory proteins such as calmodulin and troponin C. EF-hand proteins are involved in a variety of physiological processes including cell-cycle regulation, second messenger production, muscle contraction, microtubule organization and vision. RESULTS: We have determined the structures of parvalbumin mutants designed to explore the role of the last coordinating residue of the Ca(2+)-binding loop. An E101D substitution has been made in the parvalbumin EF site. The substitution decreases the Ca(2+)-binding affinity 100-fold and increases the Mg(2+)-binding affinity 10-fold. Both the Ca(2+)- and Mg(2+)-bound structures have been determined, and a structural basis has been proposed for the metal-ion-binding properties. CONCLUSIONS: The E101D mutation does not affect the Mg(2+) coordination geometry of the binding loop, but it does pull the F helix 1.1 A towards the loop. The E101D-Ca(2+) structure reveals that this mutant cannot obtain the sevenfold coordination preferred by Ca(2+), presumably because of strain limits imposed by tertiary structure. Analysis of these results relative to previously reported structural information supports a model wherein the characteristics of the last coordinating residue and the plasticity of the Ca(2+)-binding loop delimit the allowable geometries for the coordinating sphere.  相似文献   

18.
Penta-EF-hand (PEF) proteins comprise a family of Ca(2+)-binding proteins that have five repetitive EF-hand motifs. Among the eight alpha-helices (alpha1-alpha8), alpha4 and alpha7 link EF2-EF3 and EF4-EF5, respectively. In addition to the structural similarities in the EF-hand regions, the PEF protein family members have common features: (i) dimerization through unpaired C-terminal EF5s, (ii) possession of hydrophobic Gly/Pro-rich N-terminal domains, and (iii) Ca(2+)-dependent translocation to membranes. Based on comparison of amino acid sequences, mammalian PEF proteins are classified into two groups: Group I PEF proteins (ALG-2 and peflin) and Group II PEF proteins (Ca(2+)-dependent protease calpain subfamily members, sorcin and grancalcin). The Group I genes have also been found in lower animals, plants, fungi and protists. Recent findings of specific interacting proteins have started to gradually unveil the functions of the noncatalytic mammalian PEF proteins.  相似文献   

19.
Assembly of the cellulosome, a large, extracellular cellulase complex, depends upon docking of a myriad of enzymatic subunits to homologous receptors, or cohesin domains, arranged in tandem along a noncatalytic scaffolding protein. Docking to the cohesin domains is mediated by a highly conserved domain, dockerin (DS), borne by each enzymatic subunit. DS consists of two 22-amino-acid duplicated sequences, each bearing homology to the EF-hand calcium-binding loop. To compare the DS structure with that of the EF-hand helix-loop-helix motif, we analyzed the solution secondary structure of the DS from the cellobiohydrolase CelS subunit of the Clostridium thermocellum cellulosome using multidimensional heteronuclear NMR spectroscopy. The effect of Ca(2+)-binding on the DS structure was first investigated by using 2D (15)N-(1)H HSQC NMR spectroscopy. Changes in the spectra during Ca(2+) titration revealed that Ca(2+) induces folding of DS into its tertiary structure. This Ca(2+)-induced protein folding distinguishes DS from typical EF-hand-containing proteins. Sequential backbone assignments were determined for 63 of 69 residues. Analysis of the NOE connectivities and H(alpha) chemical shifts revealed that each half of the dockerin contains just one alpha-helix, comparable to the F-helix of the EF-hand motif. Thus, the structure of the DS Ca(2+)-binding subdomain deviates from that of the canonical EF-hand motif.  相似文献   

20.
To elucidate the regulatory function of EF-hand motifs of pig 80K diacylglycerol (DG) kinase, we constructed and expressed several truncation and deletion mutants of the enzyme in E. coli or COS-7 cells. The bacterially expressed EF-hand region could bind Ca2+ and was suggested to undergo conformational change like calmodulin. A mutant enzyme lacking EF-hands lost Ca(2+)-binding activity, but could be fully activated by phosphatidylserine (PS) or deoxycholate in the absence of Ca2+. The full activation of the wild-type enzyme by PS, on the other hand, was totally dependent on Ca2+. Further, the wild-type enzyme expressed in COS-7 cells was exclusively soluble, whereas the EF-hand-deleted mutant was considerably associated with the membranes. The results suggest that under Ca(2+)-free condition, the EF-hand masks the PS-binding site of the DG kinase, and that the Ca(2+)-binding results in the exposure of the PS-binding site through the conformational change of the EF-hand region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号