首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
1. Haems are unstable under aerobic conditions in the presence of thiols, which are used to activate the ferrochelatase enzyme; catalase inhibits this degradation of haem. In addition, thiols interfere with the determination of protohaem as its pyridine haemochromogen derivative. 2. Three ferrochelatase assays are described that minimize interference by these two reactions. Two of these assays involve measurement of porphyrin utilization, one spectrophotometrically and the second spectrofluorimetrically. The third assay measures haem formation by a pyridine haemochromogen technique. Results obtained with these three methods were in close agreement at a GSH concentration of 4mm. 3. The stimulatory effect of GSH on ferrochelatase has been confirmed. The spectrum of the haem formed is dependent on GSH concentration; at high GSH concentrations (20mm) the haem is in the reduced state, but at low concentration (4mm) the spectrum of the product resembles that of an oxidized haemoprotein such as ferrihaemoglobin. 4. The inhibitory effect of oxygen on ferrochelatase activity has been confirmed by spectrophotometric assay of porphyrin disappearance.  相似文献   

2.
The amounts of protochlorophyllide (P650) and protohaem were measured in ageing dark-grown barley leaves. Maximum amounts of P650 and protohaem were found in 6- to 8-day-old material after which P650 declined rapidly and protohaem more slowly. In leaves exposed to light maximum chlorophyll was produced in 6-day-old material with progressively less the older the leaves. Haem concentrations increased in seedlings of all ages exposed to light. A lag phase was observed for both chlorophyll and haem formation in leaves given a light treatment. Haem, however, showed a slight yet sig nificant decline as chlorophyll production commenced. The results indicate that chlorophyll and haem synthesis share a common pool of δ-aminolae vulinic acid (ALA). At a certain stage of development, the magnesium porphyrin pathway diverts precursors away from haem synthesis. It is only when the ALA synthesising system is well developed that the production of ALA can satisfy pathways to both haem and chlorophyll. The observed changes in haem under certain conditions suggest that, as in animal systems, haem levels may regulate porphyrin formation (chlorophylls) by controlling the supply of ALA.  相似文献   

3.
Allyl isopropylacetamide (AIA) does not stimulate porphyrin biosynthesis in greening barley; AIA inhibits the synthesis of 5-aminolaevulinate (ALA) in plants and does not overcome the repression of ALA-synthetase. This indicates that the ALA synthesis system of green plants is regulated differently from ALA synthetase of mammalian systems. Laevulinic acid (LA) inhibited the biosynthesis of tetrapyrrole pigments in greening barley and diminished the insertion of 55Fe into extractable protohaem, confirming that haem was synthesized at a time of little net increase in protohaem. ALA feeding increased iron incorporation into protohaem without increasing either extractable protohaem or cytochromes b and f. Since ALA feeding greatly increased the protochlorophyllide content of darkgrown plants and subsequent chlorophyll levels in the light, the regulation of haem pigment synthesis in plants occurs after protoporphyrin and protohaem synthesis and is likely to involve the turnover of protohaem produced in excess of haem protein requirements.  相似文献   

4.
T. C. Morton  R. W. Henderson 《BBA》1972,267(3):485-492
1. Haem c was synthesized and purified. It was shown unequivocally that the method gives a product with the cysteine residues on the -carbon atoms at the 2 and 4 positions of the haem.

2. Redox potentials of haem c in the presence of 2.5 M pyridine were determined in the pH range 1.5–13; it was found necessary to add cetyl trimethyl ammonium bromide (CTAB) to prevent precipitation in the acid range below about pH 4. The Em vs pH curve shows three slopes (−dE/dpH) of value, 0.18, 0.01 and 0.06 with points of inflexion at pH 3.8 and 10.6. The potentials are intermediate between those of protohaem and mesohaem obtained under similar conditions.

3. With constant haem c concentration (a) 10−4 M and (b) 10−5 M and varying pyridine concentration (0.12–5 M) it was found at pH 9.0 that Em values increased as the pyridine concentration was increased and there was a tendency to reach a plateau value. The explanation appears to be that pyridine binds more firmly to ferroporphyrin c than to ferriporhyrin c.

4. When the pyridine concentration was kept constant (2.5 M) and the haem c concentration was varied in the range 7 · 10−4–7 · 10−6 M, it was found that a decrease in haem c concentration brought about an increase in redox potential. The results are explained as being due to dimerization of the oxidized form.

5. The results are discussed in comparison with a number of related haem systems.  相似文献   


5.
The mechanisms of S-nitrosothiol transformation into paramagnetic dinitrosyl iron complexes (DNICs) with thiol- or non-thiol ligands or mononitrosyl iron complex (MNICs) with N-methyl-D-glucamine dithiocarbamate catalyzed by iron(II) ions under anaerobic conditions were studied by monitoring EPR or optical features of the complexes and S-nitrosothiols. The kinetic investigations demonstrated the appearance of short-living paramagnetic mononitrosyl-iron complex with L-cysteine prior to the formation of stable dinitrosyl-iron complex with cysteine in the solution of iron(II)-citrate complex (50-100 microM), S-nitrosocysteine (400 microM), and L-cysteine (20 mM) in 100 mM Hepes buffer (pH 7.4). The addition of deoxyhemoglobin (100 microM) did not influence the process, which points to a direct interaction between S-nitrosocysteine and iron(II) ions to yield DNIC. The reaction of DNIC-cysteine formation is first- and second-order in iron and S-nitrosocysteine, respectively. The third-order rate constant is (1.0 +/- 0.2) x 10(5) M(-2) s(-1) (estimated from EPR results) or (2.0 +/- 0.1) x 10(4) M(-2) s(-1) (estimated by optical method). A similar process of DNIC-cysteine formation was observed in a solution of iron(II)-citrate complex, L-cysteine, and NO-proline (200 microM) as a NO* donor. The appearance of a less stable dinitrosyl-iron complex with phosphate was detected when solutions of iron(II)-citrate containing 100 mM phosphate buffer (pH 7.4) were mixed with S-nitrosocysteine or NO-proline. The rapid formation of DNIC with phosphate was followed by its decay. When the concentration of L-cysteine in solutions was reduced from 20 to 1 mM, the life-time of the DNIC-cysteine diminished notably; this was caused by consumption of L-cysteine in the process of DNIC-cysteine formation from S-nitrosocysteine and iron. Thus, L-cysteine is consumed. Formation of DNIC with glutathione was also observed in a solution of glutathione (20 mM), S-nitrosoglutathione (400 microM), and iron(II) complex (800 microM) in 100 mM Hepes buffer (pH 7.4), but the rate of formation was about 10 times slower than the formation of the DNIC-cysteine. The rate of MNIC-MGD formation from iron(II)-MGD complexes and S-nitrosocysteine was first-order in both reactants. The second-order rate constant for this reaction, estimated from EPR measurements, was 30 +/- 5 M(-1) s(-1). Rate constants of MNIC-MGD formation from iron(II)-MGD and the more stable S-nitrosoglutathione and S-nitroso-D,L-penicillamine were equal to 3.0 +/- 0.3 and 0.3 +/- 0.05 M(-1) s(-1), respectively. Thus, the concerted mechanism of DNIC and MNIC formation from S-nitrosothiols and iron(II) ions can be suggested to be predominant.  相似文献   

6.
Biosynthesis and functional role of haem O and haem A   总被引:8,自引:0,他引:8  
Haem O and/or haem A are specifically synthesized for the haem-copper respiratory oxidases. A 17-carbon hydroxyethylfarnesyl chain at the pyrrole ring A of the haems seems essential for catalytic functions at the oxygen-reduction site. The discovery of haem O in the cytochrome bo complex from Escherichia coli was a breakthrough in the studies on haem A biosynthesis. Molecular biological and biochemical studies in the past three years demonstrated that the cyoE/ctaB/COX10 genes are indispensable for functional expression of the terminal oxidases and encode a novel enzyme haem O synthase (protohaem IX farnesyltransferase). It has recently been suggested that the ctaA gene adjacent to the ctaB-ctaCDEF gene cluster in Bacillus subtilis encodes haem A synthase (haem O monooxygenase). In this article, we review current knowledge of the genes for haem O and haem A biosyntheses, the location and regulation of haem O synthase, the possible enzymatic mechanism of farnesyl transfer to haem B and the possible roles of the farnesylated haems.  相似文献   

7.
Sideraki V  Gilbert HF 《Biochemistry》2000,39(5):1180-1188
Protein disulfide isomerase (PDI), a folding catalyst and chaperone can, under certain conditions, facilitate the misfolding and aggregation of its substrates. This behavior, termed antichaperone activity [Puig, A., and Gilbert, H. F., (1994) J. Biol. Chem. 269, 25889] may provide a common mechanism for aggregate formation in the cell, both as a normal consequence of cell function or as a consequence of disease. When diluted from the denaturant, reduced, denatured lysozyme (10-50 microM) remains soluble, although it does aggregate to form an ensemble of species with an average sedimentation coefficient of 23 +/- 5 S (approximately 600 +/- 100 kDa). When low concentrations of PDI (1-5 microM) are present, the majority (80 +/- 8%) of lysozyme molecules precipitate in large, insoluble aggregates, together with 87 +/- 12% of the PDI. PDI-facilitated aggregation occurs even when disulfide formation is precluded by the presence of dithiothreitol (10 mM). Maximal lysozyme-PDI precipitation occurs at a constant lysozyme/PDI ratio of 10:1 over a range of lysozyme concentrations (10-50 microM). Concomitant resolubilization of PDI and lysozyme from these aggregates by increasing concentrations of urea suggests that PDI is an integral component of the mixed aggregate. PDI induces lysozyme aggregation by noncovalently cross-linking 23 S lysozyme species to form aggregates that become so large (approximately 38,000 S) that they are cleared from the analytical ultracentrifuge even at low speed (1500 rpm). The rate of insoluble aggregate formation increases with increasing PDI concentration (although a threshold PDI concentration is observed). However, increasing lysozyme concentration slows the rate of aggregation, presumably by depleting PDI from solution. A simple mechanism is proposed that accounts for these unusual aggregation kinetics as well as the switch between antichaperone and chaperone behavior observed at higher concentrations of PDI.  相似文献   

8.
Exogenously supplied bovine haemin, fed to etiolated barley leaves, inhibited chlorophyll synthesis in leaves exposed to light. Haemin inhibited the regeneration of protochlorophyllide (P650) and the conversion of exogenously supplied δ-aminolaevulinate (ALA) to protochlorophyll (P630). The effect of haemin on chlorophyll production was overcome by incubating the leaves in water in the dark before light treatment, suggesting the operation of a rapid haem destruction mechanism in leaves. Protohaem turnover in dark-grown leaves was between 8 and 9 hr, based on the rate of degradation of erogenous haemin and the rate of protohaem breakdown in laevulinic acid (LA) treated leaves. The rate constant for haem destruction was 85 pmol/nmol/hr in the dark and 45 pmol/nmol/hr after 4 hr light. There was no evidence that light affects the synthesis of protohaem. It appears that the regulation of endogenous levels of protohaem is by breakdown and it is this mechanism which is under light control. Haem considerably decreased the incorporation of radioactivity from glycollate-[14C], glycine-[14C] and glutamate-[14C] into accumulated ALA in the presence of LA.  相似文献   

9.
The absorption and MCD spectra of ferric lactoperoxidase from milk and its cyanide and fluoride derivatives have been measured in the near infrared and visible wavelength regions both at room temperature and at 4.2 K. By comparison with the MCD spectra of haemoproteins of known axial ligation, which also contain protohaem IX, it has been possible to arrive at suggestions for the axial ligation in lactoperoxidase. At room temperature oxidized lactoperoxidase has the haem iron in the high-spin state, and the results indicate that the proximal ligand of the haem iron is a histidine imidazole and that the sixth ligand is probably a carboxylate ion. At 4.2 K oxidized lactoperoxidase converts almost totally to a low-spin form, changing the sixth ligand to a histidine imidazole, which is in the imidazolate form.  相似文献   

10.
Ferricytochrome c is normally insoluble in methanol, but its solution is facilitated by complexation with 18-crown-6. Absorption, circular dichroism and EPR spectroscopy indicate that the solubilised protein in MeOH exists in at least three conformational states, all different from the native state in neutral aqueous solution. In two states the haem iron (III) is low spin and in one state it is high spin, but it seems likely that all three forms are globular. The proportion in the high spin form increases at increasing crown ether concentration and on ageing the protein solution. The protein appears to return to its native conformation when it is restored to an aqueous environment.  相似文献   

11.
There is growing evidence that metal ions can accelerate the aggregation process of several proteins. This process, associated with several neuro-degenerative diseases, has been reported also for non-pathological proteins. In the present work, the effects of copper and zinc ions on the denaturation and aggregation processes of β-lactoglobulin A (BLG-A) are investigated by differential scanning calorimetry (DSC), fluorescence, electron paramagnetic resonance (EPR) and optical density. The DSC profiles reveal that the thermal behaviour of BLG-A is a complex process, strongly dependent on the protein concentration. For concentrations ≤0.13 mM, the thermogram shows an endothermic peak at 84.3°C, corresponding to denaturation; for concentrations >0.13 mM an exothermic peak also appears, above 90°C, related to the aggregation of the denaturated BLG-A molecules. The thioflavin T fluorescence indicates that the thermally induced aggregates show fibrillar features. The presence of either equimolar Cu2+ or Zn2+ ions in the protein solution has different effects. In particular, copper binds to the protein in the native state, as evidenced by EPR experiments, and destabilizes BLG-A by decreasing the denaturation temperature by about 10°C, whereas zinc ions probably perturb the partially denaturated state of the protein. The kinetics of BLG-A aggregation shows that both metal ions abolish the lag phase before the aggregation starts. Moreover, the rate of the process is 4.6-fold higher in the presence of copper, whereas the effect of zinc is negligible. The increase of the aggregation rate, induced by copper, may be due to a site-specific binding of the metal ion on the protein.  相似文献   

12.
A reducible hydroperoxidase, haemoprotein b-590, has been purified 16-fold from a soluble fraction of Escherichia coli K12, grown anaerobically with glycerol and fumarate. The Mr of the native protein, determined by gel filtration, was 331,000 although a minor, smaller species with a Mr of 188,000 was also detected; both had catalase activities. Based on the subunit Mr, determined from SDS gel electrophoresis to be 75,000, the above species are tentatively identified as tetramers and dimers, respectively. The isoelectric point of both species was 4.4. The absorption spectrum of the isolated haemoprotein is typical of ferric, high-spin haem. The A405/A280 ratio never exceeded 0.27, a value half of that obtained for E. coli hydroperoxidase I. On reduction with dithionite, the gamma, beta, and alpha bands were at 441, 559 and 590 nm respectively, the alpha-band being unusually distinct. Treatment of the reduced form with CO gave a sharp prominent gamma-band at 426 nm and caused significant shifts of the alpha and beta bands to shorter (574 and 545 nm) wavelengths. The pyridine haemochrome spectra showed the haem to be protohaem IX; the spectra were featureless between 580 and 630 nm, thus excluding the presence of haem a. However, some features of the difference spectra of the haemoprotein were reminiscent of cytochrome a1, notably the maxima in reduced minus oxidized spectra at 444 and 593 nm and the peaks and troughs in CO difference spectra at 426 and 446 nm respectively. The haemoprotein had high catalase activity: Vmax was 2.3 X 10(6) mol H2O2 (mol haem)-1 min-1 and the Km was 11 mM. At 10 mM-H2O2 the first order rate constant was 0.3 X 10(7) M-1 s-1. The haemoprotein was also a peroxidase with o-dianisidine or 2,3',6-trichloroindophenol as substrates; for the latter substrate, the Km was 0.18 mM. It is concluded that haemoprotein b-590 strongly resembles the hydroperoxidase I purified by Claiborne & Fridovich (Journal of Biological Chemistry 254, 4245-4252, 1979) and that a similar haemoprotein was mistaken for a cytochrome a1 b complex by Barrett & Sinclair (Abstracts of the 7th International Congress of Biochemistry, Tokyo, H-107, p. 907, 1967).  相似文献   

13.
In order to improve the antioxidant property of curcumin and its analogue, diacetylcurcumin, manganese was incorporated into the structures in order to enhance superoxide dismutase (SOD) activity. Manganese (Mn) complexes of curcumin (CpCpx) and diacetylcurcumin (AcylCpCpx) were synthesized and firstly investigated for SOD activity and hydroxyl radical (HO*) scavenging ability. SOD activity was evaluated by both the nitroblue tetrazolium (NBT) reduction assay and electron paramagnetic resonance (EPR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trapping agent. CpCpx and AcylCpCpx inhibited the NBT reduction and decreased the DMPO/OOH adduct much greater than corresponding antioxidants or ligands, with IC50 values of 29.9 and 24.7 microM (NBT), and 1.09 and 2.40 mM (EPR), respectively. For EPR, potassium superoxide (KO2) was used as a source of O2- where qualitative results suggested that CpCpx and AcylCpCpx were SOD mimics, which catalyze the conversion of O2- to dioxygen and hydrogen peroxide (H2O2). Additionally, CpCpx and AcylCpCpx exhibited the great inhibition of DMPO/OH adduct formation with an IC50 of 0.57 and 0.37mM, respectively, which were comparable to that of curcumin (IC50 of 0.64 mM), indicating that both Mn complexes are also an effective HO* scavenger. The stability against hydrolysis in water, various buffers and human blood/serum was carried out in vitro. It was found that both Mn complexes were pH and salt concentration dependent, being more stable in basic pH. In the human blood/serum test, CpCpx was more stable against hydrolysis than AcylCpCpx with about 10 and 20% of free Mn2+ releasing, respectively.  相似文献   

14.
A dihaem cytochrome (Mr 37 400) with cytochrome c peroxidase activity was purified from Pseudomonas stutzeri (ATCC 11 607). The haem redox potentials are far apart: one of the haems is completely ascorbate-reducible and the other is only reduced by dithionite. The coordination, spin states and redox properties of the covalently bound haems were probed by visible, NMR and electron paramagnetic resonance (EPR) spectroscopies in three oxidation states. In the oxidized state, the low-temperature EPR spectrum of the native enzyme is a complex superimposition of three components: (I) a low-spin haem indicating a histidinyl-methionyl coordination; (II) a low-spin haem indicating a histidinyl-histidinyl coordination; and (III) a minor high-spin haem component. At room temperature, NMR and optical studies indicate the presence of high-spin and low-spin haems, suggesting that for one of the haems a high-spin to low-spin transition is observed when temperature is decreased. In the half-reduced state, the component I (high redox potential) of the EPR spectrum disappears and induces a change in the g-values and linewidth of component II; the high-spin component II is no longer detected at low temperature. Visible and NMR studies reveal the presence of a high-spin ferric and a low-spin (methionyl-coordinated) ferrous state. The NMR data fully support the haem-haem interaction probed by EPR. In the reduced state, the NMR spectrum indicates that the low-potential haem is high-spin ferrous.  相似文献   

15.
Reinvestigation of the inhibition of actin polymerization by profilin   总被引:11,自引:0,他引:11  
In buffer containing 50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 5 mM imidazole, pH 7.5, 0.1 mM CaCl2, 0.2 mM dithiothreitol, 0.01% NaN3, and 0.2 mM ATP, the KD for the formation of the 1:1 complex between Acanthamoeba actin and Acanthamoeba profilin was about 5 microM. When the actin was modified by addition of a pyrenyl group to cysteine 374, the KD increased to about 40 microM but the critical concentration (0.16 microM) was unchanged. The very much lower affinity of profilin for modified actin explains the anomalous critical concentrations curves obtained for 5-10% pyrenyl-labeled actin in the presence of profilin and the apparently weak inhibition by profilin of the rate of filament elongation when polymerization is quantified by the increase in fluorescence of pyrenyl-labeled actin. Light-scattering assays of the polymerization of unmodified actin in the absence and presence of profilin gave a similar value for the KD (about 5-10 microM) when determined by the increase in the apparent critical concentration of F-actin at steady state at all concentrations of actin up to 20 microM and by the inhibition of the initial rates of polymerization of actin nucleated by either F-actin or covalently cross-linked actin dimer. In the same buffer, but with ADP instead of ATP, the critical concentration of actin was higher (4.9 microM) and the KD of the profilin-actin complex was lower for both unmodified (1-2 microM) and 100% pyrenyl-labeled actin (4.9 microM).  相似文献   

16.
Out of the 34 globins in Caenorhabditis elegans, GLB-33 is a putative globin-coupled transmembrane receptor with a yet unknown function. The globin domain (GD) contains a particularly hydrophobic haem pocket, that rapidly oxidizes to a low-spin hydroxide-ligated haem state at physiological pH. Moreover, the GD has one of the fastest nitrite reductase activity ever reported for globins. Here, we use a combination of electronic circular dichroism, resonance Raman and electron paramagnetic resonance (EPR) spectroscopy with mass spectrometry to study the pH dependence of the ferric form of the recombinantly over-expressed GD in the presence and absence of nitrite. The competitive binding of nitrite and hydroxide is examined as well as nitrite-induced haem modifications at acidic pH. Comparison of the spectroscopic results with data from other haem proteins allows to deduce the important effect of Arg at position E10 in stabilization of exogenous ligands. Furthermore, continuous-wave and pulsed EPR indicate that ligation of nitrite occurs in a nitrito mode at pH 5.0 and above. At pH 4.0, an additional formation of a nitro-bound haem form is observed along with fast formation of a nitri-globin.  相似文献   

17.
The reactivities of alkaline NH(2)OH and neutral NaHSO(3) with carbonyl and olefinic groups conjugated with the tetrapyrrole nucleus of haems were studied. The reactions were carried out with 2-3nmol of haem a, spirographis haem, isospirographis haem, 2,4-diacetyldeuterohaem and protohaem. Vinyl side chains were found to be insensitive to the chemical action of both alkaline NH(2)OH and neutral NaHSO(3). The formyl-containing haems reacted rapidly with both reagents at room temperature, as evidenced by sizable hypsochromic shifts of the reduced pyridine haemochrome spectrum. In less alkaline solution, the reactions of these formyl-containing haems with NH(2)OH were much slower. 2,4-Diacetyldeuterohaem reacted with alkaline NH(2)OH, but not with neutral NaHSO(3). These rapid, simple and straightforward tests are readily usable in differentiating among formyl, acetyl and other electron-withdrawing side chains conjugated with the tetrapyrrole ring of haems. We applied these observations to an investigation of the two unique prosthetic groups of the bovine erythrocyte green haemoproteins. The prosthetic groups of these two proteins were isolated and spectrally characterized. Under the conditions used, the haems did not react with either NH(2)OH or NaHSO(3), but were altered by dithionite, suggesting that the previous interpretation that a formyl group was present [Hultquist, Dean & Reed (1976) J. Biol. Chem.251, 3927-3932] may have been premature. These studies also provide evidence that the alpha-hydroxyfarnesylethyl side chain of haem a affects the alpha-band maximum, but not the beta- or Soret bands of the reduced pyridine haemochrome spectrum of haem a.  相似文献   

18.
During dimethyl sulphoxide-induced differentiation of DS-19 murine erythroleukaemia (MEL) cells, the activity of the terminal enzyme of the haem-biosynthetic pathway, ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), is thought to be the rate-limiting step for haem production. Differentiation of induced MEL cells in the presence of exogeneously supplied protoporphyrin IX showed that total haem production was affected by added porphyrin only after 48 h. These data suggest that iron insertion, the terminal step, is rate-limiting during the first 48 h of differentiation. Addition of low levels of diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine to differentiating cultures resulted in decreased haem production and decreased ferrochelatase activity. N-Methylprotoporphyrin at nanomolar concentrations also strongly inhibited ferrochelatase activity, but had no inhibitory effect on cellular haem production. The bivalent cations Co2+, Cd2+ and Mn2+ were tested for their effect on haem production and ferrochelatase activity. All three metals were found to inhibit both haem formation and ferrochelatase activity, with Mn2+ being the strongest effector. These data, together with those previously published, suggest that the terminal step in haem biosynthesis is rate-limiting during the early stages of differentiation in MEL cells.  相似文献   

19.
The contraction characteristics of the dorsal longitudinal muscle of Lethocerus derollei were investigated by applying small sinusoidal length changes (+/- 1% of resting length) to glycerinated muscle bundles and studying the effect of varying the frequency from 0.1 to 10 Hz and the concentration of MgATP from 35 microM to 2.3 mM. The maximum work done by the muscle per cycle increased as the MgATP concentration was decreased from 2.3 mM to 52 microM. Between 52 and 35 microM, the maximum work suddenly changed from a positive to a negative value. The optimal frequency for maximal work shifted from low to high values with increase in the MgATP concentration. As the temperature was increased, the optimal work frequency in 2.3 mM MgATP solution shifted to a higher value. As the MgATP concentration was increased, the optimal frequency for maximal power increased. The maximal value of the power was an increasing function of the MgATP concentration, reaching a plateau above 52 microM MgATP. The muscle stiffness was a decreasing function of the MgATP concentration, and above 52 microM MgATP it reached a minimum of about 22% of that in the rigor solution. These results are discussed in relation to the crossbridge kinetics.  相似文献   

20.
Cytochromes of the c -type function on the outer side of the cytoplasmic membrane in bacteria where they also are assembled from apo-cytochrome polypeptide and haem. Two distinctly different systems for cytochrome c maturation are found in bacteria. System I present in Escherichia coli has eight to nine different Ccm proteins. System II is found in Bacillus subtilis and comprises four proteins: CcdA, ResA, ResB and ResC. ResB and ResC are poorly understood polytopic membrane proteins required for cytochrome c synthesis. We have analysed these two B. subtilis proteins produced in E. coli and in the native organism. ResB is shown to bind protohaem IX and haem is found covalently bound to residue Cys-138. Results in B. subtilis suggest that also ResC can bind haem. Our results complement recent findings made with Helicobacte r CcsBA supporting the hypothesis that ResBC as a complex translocates haem by attaching it to ResB on the cytoplasmic side of the membrane and then transferring it to an extra-cytoplasmic location in ResC, from where it is made available to the apo-cytochromes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号