共查询到20条相似文献,搜索用时 15 毫秒
1.
Kennedy PG 《International journal for parasitology》2006,36(5):505-512
Human African trypanosomiasis, also known as sleeping sickness, is caused by protozoan parasites of the genus Trypanosoma, and is a major cause of human mortality and morbidity. The East African and West African variants, caused by Trypanosma brucei rhodesiense and Trypanosoma brucei gambiense, respectively, differ in their presentation but the disease is fatal if untreated. Accurate staging of the disease into the early haemolymphatic stage and the late encephalitic stage is critical as the treatment for the two stages is different. The only effective drug for late stage disease, melarsoprol, which crosses the blood-brain barrier, is followed by a severe post-treatment reactive encephalopathy in 10% of cases of which half die. There is no current consensus on the diagnostic criteria for CNS involvement and the specific indications for melarsoprol therapy also differ. There is a pressing need for a quick, simple, cheap and reliable diagnostic test to diagnose Human African trypanosomiasis in the field and also to determine CNS invasion. Cerebrospinal fluid and plasma analyses in patients with Human African trypanosomiasis have indicated a role for both pro-inflammatory and counter-inflammatory cytokines in determining the severity of the meningoencephalitis of late stage disease, and, at least in T. b. rhodesiense infection, the balance of these opposing cytokines may be critical. Rodent models of Human African trypanosomiasis have proved very useful in modelling the post-treatment reactive encephalopathy of humans and have demonstrated the central role of astrocyte activation and cytokine balances in determining CNS disease. Such animal models have also allowed a greater understanding of the more direct mechanisms of trypanosome infection on CNS function including the disruption of circadian rhythms, as well as the immunological determinants of passage of trypanosomes across the blood-brain barrier. 相似文献
2.
Drug therapy for late-stage (encephalitic) human African trypanosomiasis (HAT) is currently very unsatisfactory with the most commonly used drug, melarsoprol, having a 5% overall mortality. There is evidence in a mouse model of HAT that Substance P (SP) receptor antagonism reduces the neuroinflammatory reaction to CNS trypanosome infection. In this study we investigated the effects of combination chemotherapy with melarsoprol and a humanised SP receptor antagonist aprepitant (EMEND) in this mouse model. The melarsoprol/aprepitant drug combination did not produce any clinical signs of illness in mice with CNS trypanosome infection. This lack of any additional or unexpected CNS toxicity in the mouse model of CNS HAT provides valuable safety data for the future possible use of this drug combination in patients with late-stage HAT. 相似文献
3.
Human African trypanosomiasis: potential therapeutic benefits of an alternative suramin and melarsoprol regimen 总被引:2,自引:0,他引:2
Jennings FW Rodgers J Bradley B Gettinby G Kennedy PG Murray M 《Parasitology international》2002,51(4):506-388
Treatment of late-stage human African trypanosomiasis is complicated by the presence of trypanosomes within the central nervous system (CNS). The regimen commonly prescribed to treat CNS-stage disease involves the use of the trypanocidal drugs suramin and melarsoprol. Suramin does not cross the blood–brain barrier efficiently and therefore, at normal dosages, will not cure CNS-stage infections. An initial treatment with suramin is given to eliminate the parasites from the peripheral tissues. This is followed by a course of intravenous melarsoprol, which can enter the CNS. However, melarsoprol not only produces severe adverse reactions but also is extremely painful to administer. One possible method to help alleviate these problems is to reduce the total amount of melarsoprol in the treatment regimen. This study indicates a synergism between suramin and melarsoprol and demonstrates that experimental murine CNS-trypanosomiasis can be cured with a single intraperitoneal dose of 20 mg/kg suramin followed almost immediately by 0.05 ml (4.5 μmol) topical melarsoprol. These dosages will not cure the infection when administered as monotherapies. Moreover, the timing of the drug administration appears to be crucial to the successful outcome of the regimen. If the interval between injection of suramin and application of topical melarsoprol is extended from 15 min to 3 or 7 days, the infections are not cured. Although extended relapse times occur following these regimens when compared with monotherapy approaches. Thus, there is strong evidence that injected suramin and topical melarsoprol should be given almost simultaneously to achieve the most effective combination of the two drugs. 相似文献
4.
Low doses of reactive oxygen species protect endothelial cells from apoptosis by increasing thioredoxin-1 expression 总被引:5,自引:0,他引:5
The redox regulator thioredoxin-1 (Trx-1) is required for the redox potential of the cell and exerts important functions in cell growth and apoptosis. Severe oxidative stress has been implicated in the oxidation of proteins and cell death. However, the role of low doses of reactive oxygen species (ROS) is poorly understood. Here, we show that 10 and 50 microM H2O2 and short-term exposure to shear stress significantly increased Trx-1 mRNA and protein levels in endothelial cells. Since it is known that Trx-1 exerts anti-apoptotic functions, we next investigated whether low doses of ROS can inhibit basal and serum-depletion induced endothelial cell apoptosis. Indeed, treatment of endothelial cells with 10 and 50 microM H2O2 significantly reduced apoptosis induction. Reduction of Trx-1 expression using an antisense oligonucleotide approach resulted in the induction of apoptosis and abolished the inhibitory effect of low doses of H2O2. Taken together, our results demonstrate that low doses of ROS act as signaling molecules and exert anti-apoptotic functions in endothelial cells via upregulation of the redox-regulator Trx-1. 相似文献
5.
The effect of Nigella sativa (NS) L. oil (blackseed oil) on the fibrinolytic system of the human umbilical vein (HUV) and human uterine arterial (HUA) endothelial cells (ECs) in culture was studied. Both of them showed a concentration-dependent increase in tissue-type plasminogen activator (t-PA). A maximum effect was achieved with 50 microg oil/ml conditioned medium (CM) (1.3+/-0.15ng/10(4) cells/24h vs. control 0.7+/-0.06ng/10(4) cells/24h, and 0.38+/-0.04ng/10(4) cells/24h vs. control 0.24+/-0.02ng/10(4) cells/24h, for HUVEC and HUA-EC, respectively). At 100 microg/ml, there was a significant change in the amount of t-PA antigen produced by either HUVEC or HUA-EC (1.0+/-0.1 ng/10(4) cells/24 h or 0.28+/-0.02 ng/10(4) cells/24 h) as compared to control CM from cells grown under control conditions, but still less than that recorded at 50 microg oil/ml. Plasminogen activator inhibitor-type 1 increased the CM significantly and concentration-dependently in both cells. For HUVEC, the maximum effect was achieved at a concentration of 100 microg/ml (257.7+/-8.0 ng/10(4) cells/24 h vs. control 72.7+/-3.8 ng/10(4) cells/24 h). HUA-EC showed the maximum effect at a concentration of 100 microg/ml (171.6+/-4.4 ng/10(4) cells/24 h vs, control 53.8+/-3.7 ng/10(4) cells/24 h). This study suggests a role for NS oil in modulating the balance of fibrinolysis/thrombus formation by modulating the fibrinolytic potential of endothelial cells. 相似文献
6.
《FEBS letters》2014,588(23):4448-4456
Endothelial cells express very low density lipoprotein receptor (VLDLr). Beyond the function as peripheral lipoprotein receptor, other roles of VLDLr in endothelial cells have not been completely unraveled. In the present study, human umbilical vein endothelial cells were subjected to hypoxia, and VLDLr expression, endoplasmic reticulum (ER) stress, and apoptosis were assessed. Hypoxia triggered endothelial ER stress and apoptosis, and induced VLDLr expression. Silencing or stabilization of HIF-1α reduced and enhanced VLDLr expression, respectively. HIF-1α affected vldlr promoter activity by interacting with a hypoxia-responsive element (HRE). Knockdown or overexpression of VLDLr alleviated and exacerbated hypoxia-induced ER stress and apoptosis, respectively. Thus, hypoxia induces VLDLr expression through the interaction of HIF-1α with HRE at the vldlr promoter. VLDLr then mediates ER stress and apoptosis. 相似文献
7.
Membrane molecules in induction of apoptosis of thymocytes by mouse thymic dendritic cells which express Fas ligands 总被引:6,自引:0,他引:6
Apoptoticthymocytesweredetectedinsituinthethymus[1],whiletheeffectsofthymicstromalcellsontheprocessofcelldeathofthymocytesarestillunclear.Wepreviouslyfoundthatmousethymicdendriticcells(MTSC4)enhancedtheapoptosisofthymocytesinvitro[2],andtheseeffectsweredep… 相似文献
8.
Zhao H Liu G Wang Q Ding L Cai H Jiang H Xin Z 《Biochemical and biophysical research communications》2007,362(3):677-681
Endothelial dysfunction is thought to be a major cause of vascular complications in diabetes. Our research shows that ghrelin attenuates high glucose-induced apoptosis in cultured human umbilical vein endothelial cells (ECV-304). Exposure to glucose (33.3mM) for 72 h caused a significant increase in apoptosis, as evaluated by TUNEL and flow cytometry, but pretreatment of ghrelin (10(-7)M) eliminated high glucose-induced apoptosis in ECV-304. Ghrelin also prevented the induction of caspase-3 activation, in cells incubated with glucose (33.3 mM). Exposure of cells to ghrelin (10(-7)M) caused rapid activation of Akt. PI3K inhibitor, LY294002 attenuated ghrelin's inhibitory effect on caspase-3 activity. Ghrelin protected endothelial cells from high glucose by inhibiting reactive oxygen species (ROS) generation. Results of our study indicate that ghrelin inhibits both high glucose-induced apoptosis via PI3K/Akt pathway and ROS production in ECV-304. This peptide may have potential in preventing diabetic complications, especially in obese patients. 相似文献
9.
Vascular development is essential for the establishment of the circulatory system during embryonic development and requires the proliferation of endothelial cells. However, the underpinning regulatory mechanisms are not well understood. Here, we report that geranylgeranyl pyrophosphate(GGPP), a metabolite involved in protein geranylgeranylation, plays an indispensable role in embryonic vascular development. GGPP is synthesized by geranylgeranyl pyrophosphate synthase(GGPPS) in the mevalonate pathway. The selective knockout of Ggpps in endothelial cells led to aberrant vascular development and embryonic lethality, resulting from the decreased proliferation and enhanced apoptosis of endothelial cells during vasculogenesis. The defect in protein geranylgeranylation induced by GGPP depletion inhibited the membrane localization of Rho A and enhanced yes-associated protein(YAP) phosphorylation, thereby prohibiting the entry of YAP into the nucleus and the expression of YAP target genes related to cell proliferation and the antiapoptosis process. Moreover, inhibition of the mevalonate pathway by simvastatin induced endothelial cell proliferation defects and apoptosis, which were ameliorated by GGPP. Geranylgeraniol(GGOH), a precursor of GGPP, ameliorated the harmful effects of simvastatin on vascular development of developing fetuses in pregnant mice. These results indicate that GGPP-mediated protein geranylgeranylation is essential for endothelial cell proliferation and the antiapoptosis process during embryonic vascular development. 相似文献
10.
Seul KH Kang KY Lee KS Kim SH Beyer EC 《Biochemical and biophysical research communications》2004,319(4):1144-1151
Gap junction channels formed of connexins directly link the cytoplasm of adjacent cells and have been implicated in intercellular signaling that may regulate the functions of vascular cells. To facilitate connexin manipulation and analysis of their roles in adult endothelial cells, we developed adenoviruses containing the vascular connexins (Cx37, Cx40, and Cx43). We infected cultured human umbilical vein endothelial cells with control or connexin adenoviruses. Connexin expression was verified by immunoblotting and immunofluorescence. Infection with the Cx37 adenovirus (but not control or other connexin adenoviruses) led to a dose-dependent death of the endothelial cells that was partially antagonized by the gap junction blocker alpha-glycyrrhetinic acid and altered the intercellular transfer of Lucifer yellow and neurobiotin. Cell morphology, Annexin V and TUNEL staining, and caspase 3 assays all implicated apoptosis in the cell death. These data suggest that connexin-specific alterations of intercellular communication may modulate endothelial cell growth and death. 相似文献
11.
目的探讨金黄色葡萄球菌(金葡菌)肠毒素B诱导脐静脉内皮细胞凋亡的机制。方法将不同浓度金葡菌肠毒素B感染脐静脉内皮细胞8 h后,用流式细胞术检测细胞凋亡率,同时用比色法检测TNF-α、caspase-3及caspase-8的产生量,并检测加入TNF-α抗体、caspase-3和caspase-8抑制剂后的细胞凋亡率。结果不同浓度肠毒素B作用脐静脉内皮细胞8 h后均可诱导细胞凋亡,且TNF-α、caspase-3和caspase-8的产生量均高于对照组(P0.01);而加入TNF-α抗体、caspase-3和caspase-8抑制剂后凋亡率明显降低。结论金葡菌肠毒素B可以诱导脐静脉内皮细胞凋亡,其凋亡机制可能是通过TNF-α介导的caspase-8及caspase-3激活的外源性死亡因子受体途径。 相似文献
12.
《Bioorganic & medicinal chemistry letters》2014,24(16):3923-3927
In the present study, we investigated the apoptotic effects of isosclerone from marine-derived fungi on human breast cancer MCF-7 cells. Treatment with isosclerone exhibited a characteristic feature of apoptosis including significant cytotoxicity and DNA fragmentation in cancer cells. In addition, The apoptosis induction abilities of the isosclerone was studied by analyzing the expression of caspase-3, -8 and -9, Bcl-2 family, NF-κ-B P50, P65, and IKK proteins. Western blot and RT-PCR analysis have indicated that isosclerone induce cancer cells apoptosis through down-regulated Bcl-2 family and up-regulated caspases, and activating the NF-κ-B signaling pathway. Our data demonstrate that isosclerone specifically binds to crystal structure of apoptosis regulator BCL-2 and pseudo-activated procaspase-3 proteins through down-regulated Bcl-2 family and up-regulated caspases, and activating the NF-κ-B signaling pathway. Our proof-of-principle study should have a positive impact on future drug discovery. 相似文献
13.
Hypothermia is the most effective means of protecting the brain, heart and other organs during ischemia/reperfusion (I/R) injury. However, the precise mechanisms for hypothermia to inhibit I/R-induced endothelial cell apoptosis are not fully understood. In the present study, human umbilical endothelial cells (HUVECs) were exposed to ischemia followed by reperfusion under normothermia (37 °C) or hypothermia (33 °C). Our results showed that hypothermia markedly reduced I/R-induced endothelial cell apoptosis, the expression of cleaved caspase-3 and PARP. Moreover, hypothermia markedly reversed I/R-induced activation of Fas/caspase-8, the increase of Bax and decrease of Bcl-2. Furthermore, hypothermia inhibited JNK1/2 activation via MKP-1 induction. Together, these data demonstrate that hypothermia represses I/R-induced endothelial cell apoptosis by inhibiting both extrinsic- and intrinsic-dependent apoptotic pathways and activation of JNK1/2. 相似文献
14.
There is evidence that severe dengue disease is associated with alterations of the microvascular endothelium. We examined the hypothesis that activation and damage of microvascular endothelial cells (EC) could be induced by inflammatory mediators present in dengue patient's sera. We cultured human microvascular EC (HMEC-1) in vitro with sera from patients with acute dengue infection. Sera from patients with acute dengue induced an increase in ICAM-1 expression on HMEC-1. This effect was greater with samples from the acute febrile phase than with samples from the convalescent phase of the disease. Acute dengue sera had elevated levels of TNF-alpha and the endothelial activating effect of acute dengue sera was inhibited up to 80% by pre-treatment with monoclonal antibodies against TNF-alpha. Furthermore, acute dengue sera induced apoptosis in HMEC-1. These findings support the pathophysiologic significance of microvascular EC and serum inflammatory mediators in dengue. 相似文献
15.
Kanmogne GD Primeaux C Grammas P 《Biochemical and biophysical research communications》2005,333(4):1107-1115
Pulmonary hypertension associated with human immunodeficiency virus (HIV) infection also involves injury to the lung endothelium. However, the pathogenesis of HIV-induced pulmonary hypertension is not known; we hypothesized that HIV or secreted viral proteins could play a role in vascular injury and the increased frequency of pulmonary hypertension observed in HIV-infected patients. Here, we report that exposure of HIV-1 gp120 proteins to primary human lung microvascular endothelial cells causes apoptosis, as assessed by TUNEL assay, Annexin-V staining, and DNA laddering. Using ribonuclease protection assay and Western blotting we find that gp120-induced apoptosis of lung endothelial cells involves a down-regulation in Bcl-xl mRNA and proteins. In addition, gp120 significantly increases secretion of the potent vasoconstrictor endothelin-1 by human lung endothelial cells. These data suggest that secreted HIV gp120 proteins induce lung endothelial cell injury and could contribute to the development of HIV-associated pulmonary hypertension. 相似文献
16.
17.
Han Y Qi Y Kang J Li N Tian X Yan C 《Biochemical and biophysical research communications》2008,366(3):685-691
Recent evidence suggests that apoptosis of endothelial cells contributes to lumen formation during angiogenesis, but the biological mechanism remains obscure. In this study, we investigated the effect of nerve growth factor (NGF), a member of the neurotrophin family and a potential angiogenic factor, on human umbilical vein endothelial cells (HUVEC) apoptosis and the formation of lumen-like structures (LLS) by cultured HUVEC on Matrigel. We demonstrate that NGF induces cell apoptosis. NGF treatment has no significant effect on the expression level of its two receptors, TrkA and p75NTR. Blockade of both TrkA and p75NTR, but not that of either receptor alone significantly decreases NGF-induced cell apoptosis. NGF significantly increases formation of LLS which consist substantially of apoptotic cells. Application of NGF-neutralizing antibody or simultaneous blockade of TrkA and p75NTR significantly blocks spontaneous and NGF-induced LLS formation. These data support a role for NGF-induced cell apoptosis in LLS formation in vitro. 相似文献
18.
C. James Kirkpatrick Martin Kampe Helma Rixen Eike G. Fischer Dagmar Ruchatz Christian Mittermayer 《Virchows Archiv. B, Cell pathology including molecular pathology》1989,58(1):207-213
The purpose of the present study was to observe the expansion of a monolayer of endothelial cells over specific components
of the basement membrane. This was performed in vitro in a monolayer expansion assay over 5 days. The control surface was
uncoated glass in the form of coverslips. Test substances were coated at a concentration of 10 μg/ml. The highest expansion
was obtained with a high molecular weight fragment mixture of collagen type IV (IV-F, consisting of 75, 120 and 140 KD fragments),
followed by fibronectin. Collagens type I, III and IV tetramer gave similar results, less than fibronectin or collagen type
IV-F, although all of the above basement membrane coatings promoted expansion significantly above that of the control (P<0.01).
The poorest expansion was obtained with laminin, which was significantly less than the control. The pentapeptide GRGDS, related
to the fibronectin cell binding region, gave expansion significantly below that of the intact fibronectin molecule, as did
the intact collagen type IV molecule compared with type IV-F (P<0.025). This indicates that sequences of the fibronectin molecule other than the cell binding sequence may be involved in promoting
endothelial cell expansion. In addition, the integrity of the collagen type IV molecule does not appear necessary for this
effect. On the contrary, the higher movement on IV-F may represent an inherent repair mechanism in damaged endothelium. Autoradiographic
studies show that endothelial cell proliferation at the expanding front is involved in the migration assay. 相似文献
19.
In vitro differentiation characteristics of cultured human mononuclear cells-implications for endothelial progenitor cell biology 总被引:9,自引:0,他引:9
Walenta K Friedrich EB Sehnert F Werner N Nickenig G 《Biochemical and biophysical research communications》2005,333(2):476-482
Endothelial progenitor cells (EPCs) have been implicated in the pathogenesis and treatment of cardiovascular disease. By use of quantitative uptake of DiLDL and lectin staining, EPCs have been characterized reliably. However, the exact nature and function of this cell population still remains poorly defined. In an attempt to further clarify the cell surface characteristics of EPCs, mononuclear cells (MNCs) were isolated from human blood and cell surface expression patterns were defined by FACS analysis before and after differentiation for 1-10 days in cell culture. "Classical" double staining for DiLDL and Ulex europaeus increases to 89.2 /- 0.05 after 10 days in culture. Looking at EPC-specific markers by FACS analysis, 0.18 +/- 0.11% of freshly isolated MNCs express CD34, 0.13 +/- 0.08% CD133, 0.59 +/-0.51% VEGFr2, 0.01 +/- 0.02% CD34/VEGFr2, 0.09 +/- 0.05% CD34/CD133, 0.58 +/- 0.13% CD34/CD31, and 0.02 +/- 0.01% CD34/CD146, respectively. Induction of the endothelial phenotype is evidenced by positive staining for VEGFr2, CD146, and CD31, and occurs in co-expression with stem cell markers in less than 2 +/- 0.52% of cultured cells. Expression of CD34 increases to 0.38 +/- 0.10% after 10 days, whereas the CD133(+) cell population shows an initial peak at 24h (0.29 +/- 0.18%) before decreasing to 0.15 +/- 0.02% at day 10. EPCs co-expressing CD34/CD133 increase to 0.19 +/- 0.09% after 10 days, and EPCs double-positive for CD34/VEGFr2 increase to 1.45 +/- 1.03%. Looking at leukocyte, lymphocyte, and monocyte lineage markers, 56.27 +/- 0.15% of freshly isolated MNCs express CD45, 7.13 +/- 0.02% CD14, and 38.65 +/- 0.01% CD3. Over the 10-day culture period, expression of CD45 decreases to 28.48 +/- 0.18%, CD3 to 23.11 +/- 0.02%, and CD14 to 0.09 +/- 0.02%. Cells co-expressing CD3/CD45 decrease from 38.88 +/- 0.33% to 24.86 +/- 2.49% after 10 days in culture. These findings extend present knowledge by showing that human MNCs differentiate at a very low rate to EPCs, while a majority of the cultured cell population remain committed to the leukocyte or lymphocyte lineage. Careful surface marker analysis might be necessary when using in vitro EPC differentiation systems. 相似文献
20.
TNF-alpha, generated during the systemic inflammatory response, triggers a wide range of biological activities that mediate the neurologic manifestations associated with cancer and infection. Since this cytokine regulates ion channels in vitro (especially Kv1.3 and Kir2.1), we aimed to study Kv1.3 and Kir2.1 expression in brain in response to in vivo systemic inflammation. Cancer-induced cachexia and LPS administration increased plasma TNF-alpha. Kv1.3 and Kir2.1 expression was impaired in brain during cancer cachexia. However, LPS treatment induced Kv1.3 and downregulated Kir2.1 expression, and TNF-alpha administration mimicked these results. Experiments using TNF-alpha double receptor knockout mice demonstrated that the systemic inflammatory response mediates K(+) channel regulation in brain via TNF-alpha-dependent and -independent redundant pathways. In summary, distinct neurological alterations associated with systemic inflammation may result from the interaction of various cytokine pathways tuning ion channel expression in response to neurophysiological and neuroimmunological processes. 相似文献