首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Homocysteine (HC) is a radiation protector but toxic to bone. Its derivative homocysteine thiolactone (HCTL) and the alpha-alkylated analogue (A-methyl-HCTL) was fed to mice for a period of six weeks in a daily dose of 50 mg/kg body weight. Parameters for bone matrix as collagen content, acid solubility of bone collagen, urinary bone collagen cross links (pyridinolines) and urinary acid glycosaminoglycans were determined. Urinary acid glycosaminoglycans were significantly reduced in the HCTL treated group but not in the alpha-methyl-homocysteine thiolactone (A-methyl-HCTL) group (controls: 45 ± 7 mg/mmol creatinine, homocysteine thiolactone 38 ± 5 mg/mmol creatinine, A-methyl HCTL 45 ± 6 mg/mmol creatinine).No differences were found for the parameters of bone collagen between the groups. The potent radiation protecting methylated derivative therefore did not change bone matrix and should be a candidate for further toxicological studies.  相似文献   

2.
The influence of homocysteine, homocysteine thiolactone, cysteine and their derivatives on activation and aggregation of human platelets was investigated using the model systems in vitro. It was established that homocysteine and cysteine increased platelet aggregation induced by ADP, epinephrine, or collagen. Their action began in a range of concentrations such as their physiological blood levels (10 microM) and was increasing with the rise of their concentrations. Cysteine increased ADP-induced platelet aggregation, hardly any affect on epinephrine-induced platelet aggregation and depressed collagen-induced platelet aggregation in the highest concentration (1000 microM). Their disulfides and thioethers did not influence platelet aggregation.  相似文献   

3.
Hyperhomocysteinemia is believed to be responsible for the development of vascular disease via several mechanisms, including the impairment of endothelial-cell functionality. In-vitro studies have demonstrated that homocysteine decreases the production or bioavailability of vasodilator autacoids, such as prostacyclin and NO. Here, we show that the treatment of human endothelial cells with noncytotoxic homocysteine concentrations leads to a dose-dependent decrease in both the secretion of the vasoconstrictor agent endothelin-1 (ET-1) and the level of its mRNA. Homocysteine had an inhibitory effect at pathophysiological (0.1 and 0.5 mmol.L(-1)) and pharmacological noncytotoxic (1.0 and 2.0 mmol.L(-1)) concentrations. Mean percentage variation from control for ET-1 production was -36. 2 +/- 18.9% for 0.5 mmol.L(-1) homocysteine and -41.5 +/- 26.8% for 1.0 mmol.L(-1) homocysteine, after incubation for 8 h. Mean percentage variation from control for steady-state mRNA was -17.3 +/- 7.1% for 0.5 mmol.L(-1) homocysteine and -46.0 +/- 10.1 for 1.0 mmol.L(-1) homocysteine, after an incubation time of 2 h. ET-1 production was also reduced by incubation with various other thiol compounds containing free thiol groups, but not by incubation with thiol compounds with no free thiol group. Co-incubation of cells with homocysteine and the sulfhydryl inhibitor N-ethylmaleimide prevented the effect of homocysteine on ET-1 production, confirming a sulfhydryl-dependent mechanism. Based on the reciprocal feedback mechanism controlling the synthesis of vasoactive mediators, these preliminary data suggest a mechanism by which homocysteine may selectively impair endothelium-dependent vasodilation by primary inhibition of ET-1 production.  相似文献   

4.
Summary It is controversial whether homocysteic acid or other homocysteine derivatives show growth promoting effects. In a clonogenic assay we could show that homocysteine thiolactone and its alpha alkylated derivative increased colony formation significantly. Our work favorizes previous observations showing growth promoting activity of homocysteine derivatives and encourages further studies on that subject with implications for growth in physioogy and under pathological conditions.  相似文献   

5.
H Jakubowski 《FASEB journal》1999,13(15):2277-2283
Homocysteine thiolactone, a cyclic thioester, is synthesized by certain aminoacyl-tRNA synthetases in editing or proofreading reactions that prevent translational incorporation of homocysteine into proteins. Although homocysteine thiolactone is expected to acylate amino groups in proteins, virtually nothing is known regarding reactivity of the thiolactone. Here it is shown that reactions of the thiolactone with protein lysine residues were robust under physiological conditions. In human serum incubated with homocysteine thiolactone, protein homocysteinylation was a major reaction that could be observed with as little as 10 nM thiolactone. Individual proteins were homocysteinylated at rates proportional to their lysine contents. Homocysteinylation led to protein damage, manifested as multimerization and precipitation of extensively modified proteins. Model enzymes, such as methionyl-tRNA synthetase and trypsin, were inactivated by homocysteinylation. Metabolic conversion of homocysteine to the thiolactone, protein homocysteinylation, and resulting protein damage may underlie involvement of Hcy in the pathology of vascular disease.-Jakubowski, H. Protein homocysteinylation: possible mechanism underlying pathological consequences of elevated homocysteine levels.  相似文献   

6.
Stem sections of etiolated pea seedlings (Pisum sativum L. cv. Alaska) were incubated overnight on tracer amounts of l-[U-(14)C]methionine and, on the following morning, on 0.1 millimolar indoleacetic acid to induce ethylene formation. Following the overnight incubation, over 70% of the radioactivity in the soluble fraction was shown to be associated with S-methylmethionine (SMM). The specific radioactivity of the ethylene evolved closely paralleled that of carbon atoms 3 and 4 of methionine extracted from the tissue and was always higher than that determined for carbon atoms 3 and 4 of extracted SMM.Overnight incubation of pea stem sections on 1 millimolar methionine enhanced indoleacetic acid-induced ethylene formation by 5 to 10%. Under the same conditions, 1 millimolar homocysteine thiolactone increased ethylene synthesis by 20 to 25%, while SMM within a concentration range of 0.1 to 10 millimolar did not influence ethylene production. When unlabeled methionine or homocysteine thiolactone was applied to stem sections which had been incubated overnight in l-[U-(14)C]methionine, the specific radioactivity of the ethylene evolved was considerably lowered. Application of unlabeled SMM reduced the specific radioactivity of ethylene only slightly.  相似文献   

7.
The exact role of S-adenosylhomocysteine hydrolase (EC 3.3.1.1) in mediating the toxic effects of adenosine toward mammalian cells has not been ascertained. The selection and characterization of S-adenosylhomocysteine hydrolase-deficient cell lines offers a biochemical genetic approach to this problem. In the present experiments, a mutant clone (Sahn 12) with 11-13% of wild-type S-adenosylhomocysteine hydrolase activity was selected from the murine T lymphoma cell line R 1.1 after mutagenesis and culture in adenosine, deoxycoformycin, uridine and homocysteine thiolactone-supplemented medium. In the presence of 0.5 mM homocysteine thiolactone and 10-200 microM adenosine, wild-type and mutant cells synthesized S-adenosylhomocysteine intracellularly at markedly different rates, and excreted the compound extracellularly. Thus, at time points up to 10 h, the S-adenosylhomocysteine hydrolase-deficient lymphoblasts required 5-10-fold higher concentrations of adenosine in the medium to achieve the same intracellular S-adenosylhomocysteine levels as wild-type cells. Similarly, the Sahn 12 lymphoblasts were 5-10-fold more resistant than R 1.1 cells to the toxic effects of adenosine plus homocysteine thiolactone. These results establish that (i) 11-13% of wild-type S-adenosylhomocysteine hydrolase activity is compatible with normal growth, (ii) in medium supplemented with both adenosine and homocysteine thiolactone, intracellular S-adenosylhomocysteine is synthesized by S-adenosylhomocysteine hydrolase, (iii) the net intracellular level of S-adenosylhomocysteine is determined by both the rate of S-adenosylhomocysteine synthesis and its rate of excretion, (iv) under such conditions the accumulation of S-adenosylhomocysteine is related to cytotoxicity, (v) in the absence of an exogenous homocysteine source, S-adenosylhomocysteine derives from endogenous sources, and the accumulation of S-adenosylhomocysteine is not the primary cause of adenosine induced cytotoxicity.  相似文献   

8.
Homocysteine thiolactone is a toxic metabolite produced from homocysteine by amino-acyl t-RNA synthetase in error editing reaction. The basic cause of toxicity of homocysteine thiolactone is believed to be due to the adduct formation with lysine residues (known as protein N-homocysteinylation) leading to protein aggregation and loss of enzyme function. There was no data available until now that showed the effect of homocysteine thiolactone on the native state structural changes that led to aggregate formation. In the present study we have investigated the time dependent structural changes due to homocysteine thiolactone induced modifications on three different proteins having different physico-chemical properties (cytochrome-c, lysozyme and alpha lactalbumin). We discovered that N-homocysteinylation leads to the formation of molten globule state—an important protein folding intermediate in the protein folding pathway. We also found that the formation of the molten globule state might be responsible for the appearance of aggregate formation. The study indicates the importance of protein folding intermediate state in eliciting the homocysteine thiolactone toxicity.  相似文献   

9.
Mechanisms of homocysteine (Hcy) contribution to thrombosis are complex and only partly recognized. The available data suggest that the prothrombotic activity of homocysteine may be not only a result of the changes in coagulation process and endothelial dysfunction, but also the dysfunction of fibrinolysis. The aim of the present work was to assess the effects of homocysteine (10-100 μM mM) and its thiolactone (HTL, 0.1-1 μM) on plasminogen and plasmin functions in vitro. The amidolytic activity of generated plasmin in Hcy or HTL-treated plasminogen and plasma samples was measured by the hydrolysis of chromogenic substrate. Effects of Hcy and HTL on proteolytic activity of plasmin were monitored electrophoretically, by using of fibrinogen as a substrate. The exposure of human plasma and purified plasminogen to Hcy or HTL resulted in the decrease of urokinase-induced plasmin activity. In plasminogen samples treated with the highest concentration of homocysteine (100 μM) or thiolactone (1 μM), the activity of plasmin was inhibited by about 50%. In plasma samples, a reduction of amidolytic activity by about 30% (for 100 μM Hcy) and 40% (for 1 μM HTL), was observed. Both Hcy and HTL were also able to diminish the streptokinase-induced proteolytic activity of plasmin. In conclusion, the results obtained in this study demonstrate that Hcy and HTL may affect fibrinolytic properties of plasminogen and plasma, leading to the decrease of plasmin activity.  相似文献   

10.
The antineoplastic activity of N-maleamide homocysteine thiolactone amide (MHTA) encapsulated within liposomes was studied in mice with transplanted tumors. Tumor weight was decreased by 4-5 biweekly intraperitoneal injections of MHTA in liposomes in DBA/2N females with MTG mammary adenocarcinoma (35% of control value, P less than 0.005) and in C57B1/6N males with MUO4 rhabdomyosarcoma (11% of control value, P less than 0.0000001). Tumor incidence was reduced from 84 to 63% (P less than 0.05) and from 100 to 32% (P less than 0.001) in the two systems, respectively. When the compound was administered in dimethyl sulfoxide to A/HeJ females with A10 mammary adenocarcinoma by daily intraperitoneal injection, tumor weight was reduced to 70% of control value (P less than 0.05), and there was no decrease in tumor incidence (100%). No toxicity was observed at the therapeutic dose utilized, 10 mg/kg/day. N-Maleamide homocysteine thiolactone amide is a derivative of the normal biochemical constituents, maleic acid and homocysteine thiolactone. The results show that the N-substituted maleamide derivative of homocysteine thiolactone decreases the growth of murine tumors of two different histological types, when administered encapsulated within liposomes.  相似文献   

11.
Elevated concentration of homocysteine (Hcy) in human tissues, definied as hyperhomocysteinemia has been correlated with some diseases, such as cardiovascular, neurodegenerative, and kidney disorders. Homocysteine occurs in human blood plasma in several forms, including the most reactive one, the homocysteine thiolactone (HTL) - a cyclic thioester, which represents up to 0.29% of total plasma Hcy. In the article, the effects of hyperhomocysteinemia on the complex process of hemostasis, which regulates the flowing properties of blood, are described. Possible interactions of homocysteine and its different derivatives, including homocysteine thiolactone, with the major components of hemostasis such as endothelial cells, blood platelets, plasmatic fibrinogen and plasminogen, are also discussed. Modifications of hemostatic proteins (N-homocysteinylation or S-homocysteinylation) induced by Hcy or its thiolactone seem to be the main cause of homocysteine biotoxicity in hemostatic abnormalities. It is suggested that Hcy and HTL may also act as oxidants, but various polyphenolic antioxidants are able to inhibit the oxidative damage induced by Hcy or HTL. We also discuss the role of phenolic antioxidants in hyperhomocysteinemia -induced changes in hemostasis.  相似文献   

12.
Altered homocysteine metabolism is implicated as a pathogenic factor in atherogenesis, neoplasia, and aging. Hereditary enzymatic deficiencies and nutritional deficiencies of folate, pyridoxine, or cobalamin are associated with elevated blood homocysteine, accelerated atherosclerosis, and manifestations of aging. The failure of malignant cells to metabolize homocysteine thiolactone to sulfate is attributed to deficiency of thioretinaco, a complex containing cobalamin, homocysteine thiolactone, and retinoic acid. The sulfhydryl group of homocysteine is believed to act catalytically with ferric or cupric ions in a mixed function oxidation system to generate hydrogen peroxide, oxygen radicals, and homocysteinyl radicals. These reactive species may interact with the active site of enzyme protein to cause inactivation of catalytic activity. Homocysteine thiolactone is oxidized to sulfae by a process involving ascorbate, thioretinamide, and superoxide, under the control of thyroxine and growth hormone. Thioretinaco is believed to be the active site of adenosine triphosphate (ATP) binding in oxidative phosphorylation with the participation of oxygen, ascorbate, proton gradient, and electron transport. Depletion of thioretinaco from mitochondrial and microsomal membranes may be associated with increased formation and release of radical oxygen species within neoplastic and senescent cells. Specific proposals are made for investigating the importance of homocysteine metabolism in the oxidative modification of proteins and lipids.  相似文献   

13.
An increased level of homocysteine, a reactive thiol amino acid, is associated with several complex disorders and is an independent risk factor for cardiovascular disease. A majority (>80%) of circulating homocysteine is protein bound. Homocysteine exclusively binds to protein cysteine residues via thiol disulfide exchange reaction, the mechanism of which has been reported. In contrast, homocysteine thiolactone, the cyclic thioester of homocysteine, is believed to exclusively bind to the primary amine group of lysine residue leading to N-homocysteinylation of proteins and hence studies on binding of homocysteine thiolactone to proteins thus far have only focused on N-homocysteinylation. Although it is known that homocysteine thiolactone can hydrolyze to homocysteine at physiological pH, surprisingly the extent of S-homocysteinylation during the exposure of homocysteine thiolactone with proteins has never been looked into. In this study, we clearly show that the hydrolysis of homocysteine thiolactone is pH dependent, and at physiological pH, 1 mM homocysteine thiolactone is hydrolysed to ~0.71 mM homocysteine within 24 h. Using albumin, we also show that incubation of HTL with albumin leads to a greater proportion of S-homocysteinylation (0.41 mol/mol of albumin) than N-homocysteinylation (0.14 mol/mol of albumin). S-homocysteinylation at Cys34 of HSA on treatment with homocysteine thiolactone was confirmed using LC-MS. Further, contrary to earlier reports, our results indicate that there is no cross talk between the cysteine attached to Cys34 of albumin and homocysteine attached to lysine residues.  相似文献   

14.
High concentrations of adenosine (Ado), when added to L1210 lymphocytic leukemia cells, resulted in apoptosis or programmed cell death. The apoptotic process was accompanied by distinct morphological changes including chromatin condensation and blebbing of plasma membranes. Extensive DNA fragmentation was correlated with Ado concentrations. Furthermore, apoptosis in these cells was preceded by an early but transient expression of c-myc proto-oncogene, and was not influenced by homocysteine thiolactone added to the cells. Since severe combined immunodeficiency (SCID) is associated with a deficiency of adenosine deaminase, leading to defects in both cellular and humoral immunity, Ado-induced apoptosis may thus be a contributing factor in the pathology of SCID.  相似文献   

15.
Homocysteine thiolactone is a product of an error-editing reaction, catalyzed by Escherichia coli methionyl-tRNA synthetase, which prevents incorporation of homocysteine into tRNA and protein, both in vitro and in vivo. Here, the thiolactone is also shown to occur in cultures of the yeast Saccharomyces cerevisiae. In yeast, the thiolactone is made from homocysteine in a reaction catalyzed by methionyl-tRNA synthetase. One molecule of homocysteine is edited as thiolactone per 500 molecules of methionine incorporated into protein. Homocysteine, added exogenously to the medium or overproduced by some yeast mutants, is detrimental to cell growth. The cost of homocysteine editing in yeast is minimized by the presence of a pathway leading from homocysteine to cysteine, which keeps intracellular homocysteine at low levels. These results not only directly demonstrate that editing of errors in amino acid selection by methionyl-tRNA synthetase operates in vivo in yeast but also establish the importance of proofreading mechanisms in a eukaryotic organism.  相似文献   

16.
We studied the effect of acrolein, an α,β-unsaturated aldehyde that causes adduct-modification of lysine, cysteine, and histidine residues, on antithrombin, a key anticoagulant serpin. Intrinsic fluorescence, functionality (anti-FXa and anti-IIa activity), heparin affinity and conformational features of plasma and purified antithrombin were evaluated. In vivo experiments were carried out in mice. Intrinsic fluorescence showed a two-step conformational change. Acrolein, even at low dose, impaired the anticoagulant function of purified antithrombin by affecting its heparin affinity. However, higher concentrations of acrolein and long incubations are required to cause mild functional effects on plasma antithrombin and mice.  相似文献   

17.
Homocysteine thiolactone is formed in all cell types studied thus far as a result of editing reactions of some aminoacyl-tRNA synthetases. Because inadvertent reactions of thiolactone with proteins are potentially harmful, the ability to detoxify homocysteine thiolactone is essential for biological integrity. This work shows that a single specific enzyme, present in mammalian but not in avian sera, hydrolyzes thiolactone to homocysteine. Human serum thiolactonase, a 45-kDa protein component of high density lipoprotein, requires calcium for activity and stability and is inhibited by isoleucine and penicillamine. Substrate specificity studies suggest that homocysteine thiolactone is a likely natural substrate of this enzyme. However, thiolactonase also hydrolyzes non-natural substrates, such as phenyl acetate, p-nitrophenyl acetate, and the organophospate paraoxon. N-terminal amino acid sequence of pure thiolactonase is identical with that of human paraoxonase. These and other data indicate that paraoxonase, an organophosphate-detoxifying enzyme whose natural substrate and function remained unknown up to now, is in fact homocysteine thiolactonase. By detoxifying homocysteine thiolactone, the thiolactonase/paraoxonase would protect proteins against homocysteinylation, a potential contributing factor to atherosclerosis.  相似文献   

18.
Homocysteine and related amino thiols, homocysteic acid, cysteic acid, homocysteine sulphinic acid and cysteine sulphinic acid have been labelled as neurotoxins. Homocysteine thiolactone, a metabolic derivative of homocysteine, is cytotoxic to endothelial cells and other cell lineages. Since pancreatic beta cells share many phenotypic similarities with neuronal cells, the present study uses clonal pancreatic BRIN-BD11 cells to investigate possible detrimental effects of these amino thiols on insulin secretion and pancreatic beta cell function. Insulin secretion was concentration-dependently inhibited at both basal (1.1 mM) and stimulatory (16.7 mM) glucose by homocysteine, homocysteine thiolactone and homocysteine sulphinic acid. Cysteic acid concentration-dependently inhibited insulin secretion at 16.7 mM glucose. Cell viability was not compromised by any of the amino thiols. Insulin secretory responses to alanine were inhibited by homocysteine, homocysteine thiolactone, homocysteic acid and cysteic acid. Insulin secretion in the presence of elevated Ca(2+) and forskolin were lowered by all amino thiols, except homocysteic acid. The secretory responsiveness to PMA, GLP-1 and KCl were only impaired in the presence of homocysteine and homocysteine thiolactone. These findings indicate that homocysteine, homocysteine thiolactone and, to a lesser extent, other amino thiols cause dysfunctional insulin secretion from pancreatic beta cells.  相似文献   

19.
PURPOSE: Recently, our laboratory group has reported that rats with Type 1 diabetes have decreased plasma homocysteine and cysteine levels compared to non-diabetic controls and that organic vanadium treatment increased plasma homocysteine concentrations to non-diabetic concentrations. However, to date, no studies have been done investigating the effects of organic vanadium compounds on plasma homocysteine and its metabolites in Type 2 diabetic animal model. These studies examined the effect of organic vanadium compounds [bis(maltolato)oxovanadium(IV) and bis(ethylmaltolato)oxovanadium(IV); BMOV and BEOV] administered orally on plasma concentrations of homocysteine and its metabolites (cysteine and cysteinylglycine) in lean, Zucker fatty (ZF) and Zucker diabetic fatty (ZDF) rats. ZF rats are a model of pre-diabetic Type 2 diabetes characterized by hyperinsulinemia and normoglycemia. The ZDF rat is a model of Type 2 diabetes characterized by relative hypoinsulinemia and hyperglycemia. METHODS: Zucker lean and ZF rats received BMOV in the drinking water at a dose of 0.19 +/- 0.02 mmol/kg/day. Lean and ZDF rats received BEOV by oral gavage daily at dose of 0.1 mmol/kg. The treatment period for both studies was 21 days. At termination, animals were fasted overnight (approximately 16 h) and blood samples were collected by cardiac puncture for determination of plasma glucose, insulin and homocysteine levels. Plasma homocysteine and its metabolites levels were determined using high-pressure liquid chromatography. Plasma glucose was determined using a Glucose Analyzer 2. Plasma insulin levels were determined by radioimmunoassay. Plasma triglycerides were determined by an enzymatic assay methodology. RESULTS: ZF (n = 4) and ZDF (n = 10) rats had significantly lower plasma homocysteine as compared to their respective lean groups (ZF 0.78 +/- 0.1 micromol/L vs. Zucker lean 2.19 +/- 0.7 micromol/L; ZDF 1.71 +/- 0.2 micromol/L vs. Zucker lean 3.02 +/- 0.3 micromol/L; p < 0.05). BMOV treatment in ZF rats restored plasma homocysteine levels to those observed in lean untreated rats (ZF treated: 2.04 +/- 0.2 micromol/L; lean 2.19 +/- 0.7 micromol/L). There was a modest effect of BMOV treatment on plasma glucose levels in ZF rats. BEOV treatment significantly decreased the elevated plasma glucose levels in the ZDF rats (lean 7.9 +/- 0.1 mmol/L; lean + vanadium 7.7 +/- 0.2 mmol/L; ZDF 29.9 +/- 0.4 mmol/L; ZDF + vanadium 17.4 +/- 0.3 mmol/L, p < 0.05). Organic vanadium treatment reduced cysteine levels in both ZF and ZDF rats. No differences in total plasma cysteinylglycine concentrations were observed. CONCLUSION: Plasma homocysteine levels are significantly reduced in a pre-diabetic model of Type 2 diabetes, which was restored to lean levels upon vanadium treatment; however, this restoration of plasma homocysteine levels was not seen in ZDF Type 2 diabetic rats following vanadium treatment. In the latter case vanadium treatment may not have totally overcome the insulin resistance seen in these animals.  相似文献   

20.
The present rat study was conducted to test whether hyper-homocysteinemia induced by dietary homocysteine (Hcy) alters the cholesterol concentration in plasma and tissue and the gene expression of genes involved in cholesterol biosynthesis and uptake. Therefore, rats were fed 100 or 200 mg Hcy per kilogram body mass per day (Hcy100 group and Hcy200 group, respectively) as dl-homocysteine thiolactone, or an Hcy-free diet, which served as control, over 14 days. Rats from the Hcy100 group and the Hcy200 group had higher plasma Hcy concentrations (34.4 +/- 4.6 and 69.4 +/- 11.5 microM, respectively) than rats fed an Hcy-free diet (9.5 +/- 1.7 microM). The concentration of Hcy in liver was 2.6 and 3.8 times higher, and in small intestine was 2.6 and 5.1 times higher, in the Hcy100 group and the Hcy200 group, respectively, than in control rats (P < 0.05). The concentrations of cholesterol in plasma, lipoproteins, liver, and small intestine and the relative mRNA concentrations of sterol regulatory element-binding protein 2 (SREBP-2), 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, and low-density lipoprotein (LDL) receptor in liver and small intestine were not influenced by dl-homocysteine thiolactone supplementation. In conclusion, in view of the experimental conditions used here, increased plasma and tissue concentrations of Hcy do not alter cholesterol metabolism of liver and intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号