首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
自从七十年代确定P物质(SP)结构以来,对它的生理功能进行了大量研究,认为它很可能是一种中枢神经介质。但近年来发现,SP的前体除生成SP以外,还可生成K物质(SK)和neuromedin K(NK),它们的化学结构相似,都属于“快速激肽”,所作用的受体也大同小异。因此,从前被认为是SP的功能,实际上可能是SK或NK的作用。Ivesen等曾提出激肽受体不止一种,至少有P和E两种,SP和physalaemin以及eledoisin和kassinin分别作为二者的配基。新肽SK和NK可与E型受体结合,而且其激动作用似乎较SP更强。最近,在外周组织中又发现了另一种激肽受体——K受体,SK可能是其最适配基。激肽受体的多样性及内源性激肽的陆  相似文献   

2.
雨蛙肽中枢促胃酸分泌作用机制的初步分析   总被引:1,自引:0,他引:1  
利用特异的受体阻断剂能够拮抗相应的受体激动剂的效应的原理,分析雨蛙肽中枢促胃酸分泌作用的受体机制。向大鼠侧脑室内注射微量雨蛙肽(67ng/鼠),可引起急性灌流大鼠胃酸分泌明显增加。预先向大鼠侧脑室内注射肾上腺素受体阻断剂酚妥拉明或心得安,20min后再向侧脑室内注射雨蛙肽,预处理对雨蛙肽的促胃酸分泌作用影响不大。但事先向侧脑室内注射乙酰胆碱受体阻断剂阿托品或胆囊收缩素(CCK)受体阻断剂二丁酰环化-磷酸鸟苷(Bt_2 cGMP)则可有效地阻断雨蛙肽的作用。以上结果提示,脑内雨蛙肽促胃酸分泌机制中,可能有 CCK 受体和胆碱能受体参与,而与肾上腺素能系统关系不大。  相似文献   

3.
Myostatin三维结构模建及分子进化分析   总被引:1,自引:1,他引:0  
Myostatin(MST)为肌肉生长负调节因子,其功能受抑制可导致肌肉量增加.对MST核酸序列进行序列比对,构建进化树;采用同源模建方法首次模建MST成熟肽生物活性二聚体的四级结构,并预测MST与其受体ActRIIB的相互作用模式.进化树将肌肉生长抑制素基因(MSTN)分成4个亚家族:哺乳动物MSTN,鸟类MSTN以及鱼类MSTN 1和2.MST受纯化选择作用,在不同物种的直系同源基因具有较高的刚源性,其中哺乳动物、鸟类MST C端活性肽氨基酸序列高度保守.表明哺乳动物、鸟类MST的结构、功能类似,且信号传导路径可能一致;而鱼类MST的调控机制可能存在较大差异.MST结构及其表面静电势和疏水氨基酸分布表明静电力和疏水相互作用在MST与其受体结合过程中可能起到十分重要的作用.  相似文献   

4.
植物磺化肽类激素(phytosulfokine,PSK)是植物肽类激素的典型代表,它是有两个酪氨酸磺酸化修饰的直链五肽,在植物体的生长和发育过程中有广泛而重要的调控作用。PSK发挥作用需要被细胞膜上的受体激酶PSKR(phytosulfokine receptor)识别来进行信号转导。但目前该肽激素的信号识别和其受体激活的分子机制还不清楚。该实验室通过解析PSKR胞外结构域没有结合PSK和结合PSK以及结合PSK和共受体这三种状态的晶体学结构,直观而全面地揭示了激素识别和受体激活的分子机制。PSK通过形成反向β片层与PSKR岛区中的β片层互作而结合,PSK的两个磺酸化基团直接参与同PSKR的结合。通过遗传和生化等实验的验证,发现PSK可以介导PSKR和体细胞胚胎发育受体激酶(somatic embrogenesis receptor like kinases,SERKs)的结合。进一步通过解析PSK-PSKR-SERK的受体激活复合物的晶体学结构发现,PSK没有同SERK结合,而是通过诱导PSKR岛区的构象变化来别构介导PSKR与SERK结合,这一机制区别于经典的"分子胶"模式。该研究揭示了PSK识别的分子机制和受体PSKR的激活新机制。  相似文献   

5.
凝血素样氧化低密度脂蛋白受体结构与动脉粥样硬化   总被引:1,自引:0,他引:1  
动脉粥样硬化(As)早期改变是内皮功能紊乱,新型受体-植物凝集素样氧化型低密度脂蛋白受体-1(LOX-1)在氧化低密度脂蛋白(Ox-LDL)诱导的内皮功能紊乱过程中起关键性作用.LOX-1主要在内皮细胞表达,其结构和功能与其他可吞噬ox-LDL的清道夫受体显著不同,但与自然杀伤细胞受体却高度一致.目前对LOX-1基因和蛋白结构以及功能尚不完全清楚.因此,进一步研究LOX-1的功能及其表达的调控机制,不仅有助于了解脂代谢和As发病机制,对心血管病防治也有十分重要的意义.本文对LOX-1其结构、功能及其调控因素等最新研究进行综述.  相似文献   

6.
成纤维细胞生长因子(FGFs)是一类蛋白质活性肽,在有机体内外显示广谱的生物学活性和功能,在生物发育学、生理学与临床药理学方面具有重要的作用和意义.对 FGFs 家族成员肽的特征特性,FGFs 的染色体定位、基因结构与功能,FGFs 的信号分子作用与促分裂素作用,FGFs 的作用受体、主动和被动调节与拮抗机理进行了综述.  相似文献   

7.
降钙素基因相关肽家族是一类多功能的激素家族 ,参与人体的多种生物学功能 ,与多种疾病有关。降钙素基因相关肽受体包括降钙素受体 (CTR)和降钙素受体样受体 (CRLR) ,CTR可以独自与降钙素结合 ,而CRLR必须与一组称作受体活性修饰蛋白 (RAMPs)的蛋白质共同作用才能发挥生物学功能。综述CTR的研究概况及CRLR与RAMPs相互作用的机制和表达调控 ,以期为人们设计新型药物提供参考。  相似文献   

8.
塞克肽是一类重要的核糖体肽天然产物,具有多种生物活性,它们的共同特征是存在由半胱氨酸巯基与受体氨基的α-碳原子连接的分子内硫醚键.本篇综述总结了近年来塞克肽的发现、活性、生物合成、作用机制等多方面的工作,详细讨论了由SAM自由基酶介导的硫醚键形成机制.  相似文献   

9.
甘丙肽家族包含甘丙肽(galanin)、甘丙肽信息相关肽(galanin-message-associated peptide,GMAP)、甘丙肽样肽(galanin-like peptide,GALP)和alarin。目前已经克隆了三种甘丙肽受体,分别是GalR1、GalR2、GalR3,它们都是G蛋白偶联受体。三种受体具有不同的分布特征,介导不同的生理过程。甘丙肽及其受体在生物体内中枢神经系统和外周神经系统中分布广泛,参与学习和记忆、焦虑行为、痛觉调节、摄食活动、渗透平衡、神经损伤修复和神经保护、胃肠道活动以及皮肤炎症处理等多种生理过程。这些生理功能提示甘丙肽及其受体可能在多种疾病的病理过程中发挥着潜在的作用,如阿尔茨海默氏病、癫痫、酗酒、糖尿病、神经性疼痛、抑郁症和癌症。  相似文献   

10.
吕倩雯  杨永芳 《遗传》2023,(9):813-828
作为植物体内一类重要的信号分子,小肽在飞摩尔(fmol)级的浓度下被相应的细胞质膜类受体激酶识别并结合,开启小肽-受体介导的细胞间信号转导过程,从而调控植物干细胞的生长与增殖,调节根、茎、叶、花和果实等多种植物器官的发育,协调植物响应生物和非生物胁迫等多种生理过程。随着研究的不断深入,越来越多的报道揭示了小肽在水稻(Oryza sativa)、玉米(Zea mays)、马铃薯(Solanum tuberosum)及番茄(Solanum lycopersicum)等多种作物农艺性状中的重要调控功能,暗示着小肽信号在作物遗传改良中的巨大应用潜力。本文系统总结了小肽-受体介导的信号转导模式在植物中的生物学功能及分子机制,重点综述了小肽在调控作物产量、品质和抗性等重要农艺性状中的研究进展,并讨论了小肽信号应用于作物育种改良的策略,最后提出了小肽研究的未来方向。  相似文献   

11.
We report the discovery and characterization of three conantokin peptides from the venom of Conus parius. Each peptide (conantokin-Pr1, -Pr2, and -Pr3) contains 19 amino acids with three gamma-carboxyglutamate (Gla) residues, a post-translationally modified amino acid characteristic of conantokins. The new peptides contain several amino acid residues that differ from previous conantokin consensus sequences. Notably, the new conantokins lack Gla at the 3rd position from the N terminus, where the Gla residue is replaced by either aspartate or by another post-translationally modified residue, 4-trans-hydroxyproline. Conantokin-Pr3 is the first conantokin peptide to have three different post-translational modifications. Conantokins-Pr1 and -Pr2 adopt alpha-helical conformations in the presence of divalent cations (Mg2+ and Ca2+) but are generally unstructured in the absence of divalent cations. Conantokin-Pr3 adopts an alpha-helical conformation even in the absence of divalent cations. Like other conantokins, the new peptides induced sleep in young mice and hyperactivity in older mice upon intracranial injection. Electrophysiological assays confirmed that conantokins-Pr1, -Pr2, and -Pr3 are N-methyl-d-aspartate (NMDA) receptor antagonists, with highest potency for NR2B-containing NMDA receptors. Conantokin-Pr3 demonstrated approximately 10-fold selectivity for NR2B-containing NMDA receptors. However, conantokin-Pr2 showed minimal differences in potency between NR2B and NR2D. Conantokins-Pr1, -Pr2, and -Pr3 all demonstrated high specificity of block for NMDA receptors, when tested against various ligand-gated ion channels. Conus parius conantokins allow for a better definition of structural and functional features of conantokins as ligands targeting NMDA receptors.  相似文献   

12.
Conantokin-R (con-R) is a gamma-carboxyglutamate-containing 27-residue neuroactive peptide present in the venom of Conus radiatus, and acts as a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor. This peptide features a single disulfide bond, a type of structural element found in most classes of conotoxins, but not in other conantokins. The NMDA receptor antagonist activity of chemically synthesized con-R was determined through an assay involving inhibition of the spermine-enhanced binding of the NMDA receptor channel blocker, [(3)H]MK-801, to rat brain membranes, and yielded an IC(50) of 93 nM. This value represents a 2-5 times better potency than con-G or con-T, the other two characterized conantokins. Circular dichroism (CD) analysis of the metal-free form of con-R is indicative of a low alpha-helical content. There is an increase in alpha-helicity upon the addition of divalent cations, such as Ca(2+), Mg(2+), or Zn(2+). Isothermal titration calorimetry experiments showed one detectable Mg(2+) binding site with a K(d) of 6.5 microM, and two binding sites for Zn(2+), with K(d) values of 150 nM and 170 microM. Residue-specific information of the conformational state of con-R was obtained by two-dimensional (1)H-NMR. Analyses of the alpha-proton chemical shifts, NOE patterns, and hydrogen exchange rates of the peptide indicated an alpha-helical conformation for residues 1-19. Synthetic con-R-derived peptide variants, containing deletions of 7 and 10 amino acid residues from the carboxy-terminus of the wild-type peptide, displayed unaltered cation binding and NMDA receptor antagonist properties. The alpha-helical secondary structures of the two truncation peptides were more stable than full-length con-R, as evidenced by CD measurements and reduced backbone hydrogen exchange rates. These results provide experimental evidence that the structural elements common to the three conantokins thus far identified are the primary determinants for receptor function and cation binding/secondary structure stability.  相似文献   

13.
Using molecular phylogeny has accelerated the discovery of peptidic ligands targeted to ion channels and receptors. One clade of venomous cone snails, Asprella, appears to be significantly enriched in conantokins, antagonists of N-methyl d-aspartate receptors (NMDARs). Here, we describe the characterization of two novel conantokins from Conus rolani, including conantokin conRl-B that has shown an unprecedented selectivity for blocking NMDARs that contain NR2B subunits. ConRl-B shares only some sequence similarity with the most studied NR2B selective conantokin, conG. The divergence between conRl-B and conG in the second inter-Gla loop was used to design analogues for structure-activity studies; the presence of Pro10 was found to be key to the high potency of conRl-B for NR2B, whereas the ε-amino group of Lys8 contributed to discrimination in blocking NR2B- and NR2A-containing NMDARs. In contrast to previous findings for Tyr5 substitutions in other conantokins, conRl-B[L5Y] showed potencies on the four NR2 NMDA receptor subtypes that were similar to those of the native conRl-B. When delivered into the brain, conRl-B was active in suppressing seizures in the model of epilepsy in mice, consistent with NR2B-containing NMDA receptors being potential targets for antiepileptic drugs. Circular dichroism experiments confirmed that the helical conformation of conRl-B is stabilized by divalent metal ions. Given the clinical applications of NMDA antagonists, conRl-B provides a potentially important pharmacological tool for understanding the differential roles of NMDA receptor subtypes in the nervous system. This work shows the effectiveness of coupling molecular phylogeny, chemical synthesis, and pharmacology for discovering new bioactive natural products.  相似文献   

14.
Whole cell voltage clamp recordings were performed to assess the ability of conantokin-G (con-G), conantokin-T (con-T), and a 17-residue truncated form of conantokin-R (con-R[1-17]) to inhibit N-methyl-d-aspartate (NMDA)-evoked currents in human embryonic kidney 293 cells transiently expressing various combinations of NR1a, NR1b, NR2A, and NR2B receptor subunits. Con-T and con-R[1-17] attenuated ion currents in cells expressing NR1a/NR2A or NR1a/NR2B. Con-G did not affect NMDA-evoked ionic currents in cells expressing NR1a/NR2A, but it showed inhibitory activity in cells expressing NR1a/NR2B receptors and the triheteromeric combination of NR1a/NR2A/NR2B. An Ala-rich con-G analog, con-G[Q6G/gamma7K/N8A/gamma10A/gamma14A/K15A/S16A/N17A] (Ala/con-G, where gamma is Gla), in which all nonessential amino acids were altered to Ala residues, manifested subunit specificity similar to that of con-G, suggesting that the replaced residues are not responsible for selectivity in the con-G framework. A sarcosine-containing con-T truncation analog, con-T[1-9/G1Src/Q6G], inhibited currents in NR1a/NR2A and NR1a/NR2B receptors, eliminating residues 10-21 as mediators of the broad subunit selectivity of con-T. In contrast to the null effects of con-G and Ala/con-G at a NR1a/NR2A-containing receptor, some inhibition ( approximately 40%) of NMDA-evoked currents was effected by these peptides in cells expressing NR1b/NR2A. This finding suggests that the presence of exon 5 in NR1b plays a role in the activity of the conantokins. Analysis of various conantokin analogs demonstrated that Leu(5) of con-G is an important determinant of conantokin selectivity. Taken as a whole, these results suggest that the important molecular determinants on conantokins responsible for NMDA receptor activity and specificity are discretely housed in specific residues of these peptides, thus allowing molecular manipulation of the NMDA receptor inhibitory properties of the conantokins.  相似文献   

15.
The pharmacology of the N -methyl-d-aspartate (NMDA) receptor site was examined in pathologically affected and relatively spared regions of cerebral cortex tissue obtained at autopsy from Alzheimer's disease cases and matched controls. The affinity and density of the [(3)H]MK-801 binding site were delineated along with the enhancement of [(3)H]MK-801 binding by glutamate and spermine. Maximal enhancement induced by either ligand was regionally variable; glutamate-mediated maximal enhancement was higher in controls than in Alzheimer's cases in pathologically spared regions, whereas spermine-mediated maximal enhancement was higher in controls in areas susceptible to pathological damage. These and other data suggest that the subunit composition of NMDA receptors may be locally variable. Studies with modified conantokin-G (con-G) peptides showed that Ala(7)-con-G had higher affinity than Lys(7)-con-G, and also defined two distinct binding sites in controls. Nevertheless, the affinity for Lys(7)-con-G was higher overall in Alzheimer's brain than in control brain, whereas the reverse was true for Ala(7)-con-G. Over-excitation mediated by specific NMDA receptors might contribute to localized brain damage in Alzheimer's disease. Modified conantokins are useful for identifying the NMDA receptors involved, and may have potential as protective agents.  相似文献   

16.
Conantokins are short peptides derived from the venoms of marine cone snails that act as antagonists of the N-methyl-D-aspartate (NMDA) receptor family of excitatory glutamate receptors. These peptides contain γ-carboxyglutamic acid residues typically spaced at i,i+4 and/or i,i+7 intervals, which by chelating divalent cations induce and stabilize helical conformation of the peptide. Introduction of a dicarba bridge (or a staple) can covalently stabilize peptide helicity and improve its pharmacological properties. To test the hypothesis that stapling can effectively replace γ-carboxyglutamic acid residues in stabilizing the helical conformation of conantokins, we designed, synthesized, and characterized several stapled analogs of conantokin G (conG), with varying connectivities in terms of staple length and location along the face of the α-helix. NMR studies confirmed that the ring-closing metathesis reaction yielded a single product with the Z configuration of the olefinic bond. Based on circular dichroism and molecular modeling, the stapled analogs exhibited significantly enhanced helicity compared with the native peptide in a metal-free environment. Stapling i,i+4 was benign with respect to effects on in vitro and in vivo pharmacological properties. One analog, namely conG[11-15,S(i,i+4)S(8)], blocked NR2B-containing NMDA receptors with IC(50) = 0.7 μm and provided significant protection in the 6-Hz psychomotor model of pharmacoresistant epilepsy in mice. Remarkably, unlike native conG, conG[11-15,S(i,i+4)S(8)] produced no behavioral motor toxicity. Our results extend the applications of peptide stapling to helical peptides with extracellular targets and provide a means for engineering conantokins with improved pharmacological properties.  相似文献   

17.
The modulation of recombinant NMDA receptors by conantokin-G (con-G) and Ala7-conantokin-G (Ala7-Con-G) was investigated in Xenopus oocytes injected with capped RNA coding for NR1 splice variants and NR2 subunits using the two-electrode voltage clamp technique. Glutamate exhibited a marginally higher apparent affinity for NR2A-containing receptors than NR2B-containing receptors, regardless of the NR1 subunit present. Conantokins were bath applied to give cumulative concentration responses in the presence of 3 and 30 mum glutamate. Both contantokins exhibited biphasic concentration-response relationships at NR2A-containing NMDA receptors, producing potentiation at low conantokin concentrations and inhibition at high concentrations. These effects were stronger with glutamate concentrations near its EC50, and less marked at saturating concentrations. In contrast, the conantokin concentration-response relation was monophasic and inhibitory at NR2B-containing receptors. We conclude that the combinations of subunits that comprise the NMDA receptor complex influence conantokin and glutamate affinities and the nature of the responses to conantokins.  相似文献   

18.
19.
Dai Q  Zajicek J  Castellino FJ  Prorok M 《Biochemistry》2003,42(43):12511-12521
The association of a ligand with its cognate cell surface receptor can be facilitated by interactions between the ligand and the lipid phase of the cell membrane. With respect to the N-methyl-D-aspartate receptor (NMDAR), we have previously established a low affinity, nonreceptor-mediated interaction of the peptidic conantokins with synaptic membranes in conjunction with a high affinity binding to the NMDARs present therein [Klein, R. C., Prorok, M., and Castellino, F. J. (2003) J. Pept. Res. 61, 307-317]. In the current study, several techniques including size-exclusion chromatography, circular dichroism, fluorescence, and NMR spectroscopies were used to investigate the binding, conformation, and orientation of conantokins and their variants to a variety of phospholipid (PL) vesicles and multilayers. We have found that conantokins bind to PLs and that the effectors Ca(2+) and spermine slightly increase this binding ability. The conantokins preserve a high degree of helical conformation when bound to vesicles in the presence of Ca(2+). In the absence of Ca(2+), only conantokin-G (con-G) manifests an increase in conantokin helicity with increasing vesicle concentration. In solution, the conantokins appear to be localized at the headgroup of vesicles and do not insert into the hydrophobic core of the bilayer. On aligned PL films, the helical axis of the conantokins can either reside normal to the membrane surface or partition in a parallel orientation, depending on the nature of the conantokins and the PLs used. These orientation preferences may be conjoined with the biological activities of the conantokins.  相似文献   

20.
Conantokins are ∼20-amino acid peptides present in predatory marine snail venoms that function as allosteric antagonists of ion channels of the N-methyl-d-aspartate receptor (NMDAR). These peptides possess a high percentage of post-/co-translationally modified amino acids, particularly γ-carboxyglutamate (Gla). Appropriately spaced Gla residues allow binding of functional divalent cations, which induces end-to-end α-helices in many conantokins. A smaller number of these peptides additionally contain 4-hydroxyproline (Hyp). Hyp should prevent adoption of the metal ion-induced full α-helix, with unknown functional consequences. To address this disparity, as well as the role of Hyp in conantokins, we have solved the high resolution three-dimensional solution structure of a Gla/Hyp-containing 18-residue conantokin, conRl-B, by high field NMR spectroscopy. We show that Hyp10 disrupts only a small region of the α-helix of the Mn2+·peptide complex, which displays cation-induced α-helices on each terminus of the peptide. The function of conRl-B was examined by measuring its inhibition of NMDA/Gly-mediated current through NMDAR ion channels in mouse cortical neurons. The conRl-B displays high inhibitory selectivity for subclasses of NMDARs that contain the functionally important GluN2B subunit. Replacement of Hyp10 with N8Q results in a Mg2+-complexed end-to-end α-helix, accompanied by attenuation of NMDAR inhibitory activity. However, replacement of Hyp10 with Pro10 allowed the resulting peptide to retain its inhibitory property but diminished its GluN2B specificity. Thus, these modified amino acids, in specific peptide backbones, play critical roles in their subunit-selective inhibition of NMDAR ion channels, a finding that can be employed to design NMDAR antagonists that function at ion channels of distinct NMDAR subclasses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号