首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Wiskott-Aldrich syndrome protein family member N-WASP is a key integrator of the multiple signalling pathways that regulate actin polymerization via the Arp2/3 complex. Our previous studies have shown that N-WASP is required for the actin-based motility of vaccinia virus and is recruited via Nck and WIP. We now show that Grb2 is an additional component of the vaccinia actin tail-forming complex. Recruitment of Nck and Grb2 to viral particles requires phosphorylation of tyrosine residues 112 and 132 of A36R, the vaccinia actin tail nucleator, respectively. The presence of Grb2 on the virus is also dependent on the polyproline-rich region of N-WASP. The Grb2 pathway alone is therefore unable to nucleate actin tails, as its recruitment requires the prior recruitment of N-WASP by Nck. However, Grb2 does play an important role in actin-based motility of vaccinia, as in its absence, the mean number of actin tails per cell is reduced 2.6-fold. Thus, both Nck and Grb2 act in a cooperative manner to stabilize and/or activate the vaccinia actin-nucleating complex. We suggest that such cooperativity between "primary" and "secondary" adaptor proteins is likely to be a general feature of receptor-mediated signalling.  相似文献   

2.
The clinical outcome of infections with Helicobacter pylori is determined by a complex interplay of host-pathogen interactions, and persistent infection with this pathogen is the major cause of developing chronic gastritis, peptic ulcers and gastric cancer. Highly virulent strains encode a so-called type IV secretion system which translocates the CagA effector protein into gastric epithelial target cells. Injected CagA becomes tyrosine-phosphorylated on EPIYA sequence motifs by Src and Abl family kinase members. CagA then binds to and activates/inactivates various signalling proteins in a phosphorylation-dependent and phosphorylation-independent manner. In this way injected CagA can act as a master key that evolved during evolution the ability to highjack multiple downstream signalling cascades. Here we review our knowledge on the tyrosine phosphorylation motifs in CagA, the recent advances in the interaction of CagA with Src and Abl tyrosine kinases and their role in signalling events leading to changes of the phosphorylation status of actin-binding proteins cortactin, ezrin and vinculin followed by actin-cytoskeletal rearrangements, cell scattering and elongation. Detailed investigation of these pathways will help to yield novel insights and to elucidate the mechanisms of H. pylori-induced pathogenesis.  相似文献   

3.
We previously showed that overexpression of the Nck Src homology (SH) 2/SH3 adaptor in Xenopus embryos induced developmental defects including anterior truncation and mesoderm ventralization. Mutagenic analysis indicated that this was due to relocalization of endogenous proteins that bind the first two SH3 domains of Nck. We therefore screened a Xenopus expression library with Nck SH3 domains to identify Nck-interacting proteins, and evaluated candidate binding proteins for a potential role in Nck-induced anterior truncation/ventralization. Of 39 binding proteins analyzed, only the Abl-related kinase Arg and the Cbl proto-oncogene product bound preferentially to the first two SH3 domains in tandem compared with the individual domains, consistent with a role in the developmental phenotype. High level overexpression of c-Abl or Arg alone induced anterior truncation, as did lower levels of an activated form of Abl; Cbl alone had no effect. In a sensitized system where subthreshold amounts of a ventralizing Nck mutant were expressed, co-expression of the combination of Abl or Arg and Cbl at modest levels strongly potentiated anterior truncation, while Arg, Abl, or Cbl alone were without effect. These results suggest a role for both Cbl and Abl family kinases in patterning the Xenopus embryo.  相似文献   

4.
Src family kinases (SFKs) are key factors in the process of coupling signals from the cell surface to intracellular machinery and critically involved in the regulation of many neural functions mediated through growth factors, G-protein-coupled receptors or ligand-gated ion channels. The three minireviews here focus on recent findings dealing with the regulation of N-methyl-d-aspartate (NMDA) receptors by SFKs.  相似文献   

5.
Studies of the actin-based motility of pathogens have provided important insights into the events occurring at the leading edge of motile cells [1] [2] [3]. To date, several actin-cytoskeleton-associated proteins have been implicated in the motility of Listeria or Shigella: vasodilator-stimulated phosphoprotein (VASP), vinculin and the actin-related protein complex of Arp2 and Arp3 [4] [5] [6] [7]. To further investigate the underlying mechanism of actin-tail assembly, we examined the localization of components of the actin cytoskeleton including Arp3, VASP, vinculin and zyxin during vaccinia, Listeria and Shigella infections. The most striking difference between the systems was that a phosphotyrosine signal was observed only at the site of vaccinia actin-tail assembly. Micro-injection experiments demonstrated that a phosphotyrosine protein plays an important role in vaccinia actin-tail formation. In addition, we observed a phosphotyrosine signal on clathrin-coated vesicles that have associated actin-tail-like structures and on endogenous vesicles in Xenopus egg extracts which are able to nucleate actin tails [8] [9]. Our observations indicate that a host phosphotyrosine protein is required for the nucleation of actin filaments by vaccinia and suggest that this phosphoprotein might be associated with cellular membranes that can nucleate actin.  相似文献   

6.
Emerging roles of Abl family tyrosine kinases in microbial pathogenesis   总被引:2,自引:0,他引:2  
Abl family kinases are central regulators of multiple cellular processes controlling actin dynamics, proliferation and differentiation. Recent studies indicate that different pathogens highjack Abl kinase signalling to reorganize the host actin cytoskeleton and promote the tyrosine phosphorylation of four known bacterial and viral effector proteins. Abl signalling is implicated in such diverse processes as microbial invasion, viral release from host cells, actin-based motility, actin-rich pedestal formation and cell scattering. Thus, Abl kinases are emerging as crucial regulators of multiple pathological signalling cascades during infection. Therapeutic intervention against Abl kinase activity might be an effective and novel strategy to combat serious microbial diseases.  相似文献   

7.
8.
9.
Recent studies provide insights into the mechanisms by which Abelson non-receptor tyrosine kinases relay information from axon guidance and growth factor receptors to promote cytoskeletal rearrangements in developing neurons. Abelson non-receptor tyrosine kinases are also found in mature synapses, where their activities are required for optimal synaptic function.  相似文献   

10.
Regulation of Btk by Src family tyrosine kinases.   总被引:5,自引:1,他引:4       下载免费PDF全文
Loss of function of Bruton's tyrosine kinase (Btk) results in X-linked immunodeficiencies characterized by a broad spectrum of signaling defects, including those dependent on Src family kinase-linked cell surface receptors. A gain-of-function mutant, Btk*, induces the growth of fibroblasts in soft agar and relieves the interleukin-5 dependence of a pre-B-cell line. To genetically define Btk signaling pathways, we used a strategy to either activate or inactivate Src family kinases in fibroblasts that express Btk*. The transformation potential of Btk* was dramatically increased by coexpression with a partly activated c-Src mutant (E-378 --> G). This synergy was further potentiated by deletion of the Btk Src homology 3 domain. Downregulation of Src family kinases by the C-terminal Src kinase (Csk) suppressed Btk* activation and biological potency. In contrast, kinase-inactive Csk (K-222 --> R), which functioned as a dominant negative molecule, synergized with Btk* in biological transformation. Activation of Btk* correlated with increased phosphotyrosine on transphosphorylation and autophosphorylation sites. These findings suggest that the Src and Btk kinase families form specific signaling units in tissues in which both are expressed.  相似文献   

11.
Solitary amoebae of Dictyostelium discoideum are frequently exposed to stressful conditions in nature, and their multicellular development is one response to environmental stress. Here we analyzed an aggregation stage abundant gene, krsA, homologous to human krs1 (kinase responsive to stress 1) to understand the mechanisms for the initiation of development and cell fate determination. The krsA- cells exhibited reduced viability under hyperosmotic conditions. They produced smaller aggregates on membrane filters and did not form aggregation streams on a plastic surface under submerged starvation conditions, but were normal in sexual development. During early asexual development, the expression of cAMP-related genes peaked earlier in the knockout mutants. Neither cAMP oscillation in starved cells nor an increase in the cAMP level following osmotic stress was observed in krsA-. The nuclear export signal, as well as the kinase domain, in KrsA was necessary for stream formation. These results strongly suggest that krsA is involved in cAMP relay, and that signaling pathways for multicellular development have evolved in unison with the stress response.  相似文献   

12.
The Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr530 in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated. The c-Src C-terminal peptide bound two Fe3 + ions with affinities at pH 4.0 of 33 and 252 μM, and phosphorylation increased the affinities at least 10-fold to 1.4 and 23 μM, as measured by absorbance spectroscopy. The corresponding phosphorylated peptide from the SFK Lyn bound two Fe3 + ions with much higher affinities (1.2 pM and 160 nM) than the Src C-terminal peptide. Furthermore, when Lyn or Hck kinases, which had been stabilised in the inactive state by phosphorylation of the C-terminal regulatory tyrosine, were incubated with Fe3 + ions, a significant enhancement of kinase activity was observed. In contrast Lyn or Hck kinases in the unphosphorylated active state were significantly inhibited by Fe3 + ions. These results suggest that Fe3 + ions can regulate SFK activity by binding to the phosphorylated C-terminal regulatory tyrosine.  相似文献   

13.
Specific integrins expressed on oligodendrocytes, the myelin-forming cells of the central nervous system, promote either differentiation and survival or proliferation by amplification of growth factor signaling. Here, we report that the Src family kinases (SFKs) Fyn and Lyn regulate each of these distinct integrin-driven behaviors. Fyn associates with alpha6beta1 and is required to amplify platelet-derived growth factor survival signaling, to promote myelin membrane formation, and to switch neuregulin signaling from a phosphatidylinositol 3-kinase to a mitogen-activated protein kinase pathway (thereby changing the response from proliferation to differentiation). However, earlier in the lineage Lyn, not Fyn, is required to drive alphaVbeta3-dependent progenitor proliferation. The two SFKs respond to integrin ligation by different mechanisms: Lyn, by increased autophosphorylation of a catalytic tyrosine; and Fyn, by reduced Csk phosphorylation of the inhibitory COOH-terminal tyrosine. These findings illustrate how different SFKs can act as effectors for specific cell responses during development within a single cell lineage, and, furthermore, provide a molecular mechanism to explain similar region-specific hypomyelination in laminin- and Fyn-deficient mice.  相似文献   

14.
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.  相似文献   

15.
Apicomplexan parasites are an ancient group of protozoan parasites that includes several significant pathogens of humans and animals. To target and invade host cells they use a unique form of actin-based motility, called gliding motility. At the centre of the molecular motor that underlies this unique mode of locomotion are short, highly dynamic actin filaments. Recent molecular work, along with the availability of completed genomes for several Apicomplexa, has highlighted unique features of parasite actin and its regulation - features that might provide new ways to block motility and, consequently, prevent infection and disease.  相似文献   

16.
17.
18.
Cellular adhesion molecules such as E-selectin function to recruit leukocytes into the inflammatory lesions of diseases such as rheumatoid arthritis (RA) and atherosclerosis. Monocytes are the key components of the cellular infiltrates present in these disorders. We hypothesized that soluble E-selectin (sE-selectin) might mediate the chemotaxis of monocytes. In this report, we show that sE-selectin induced normal human peripheral blood monocyte migration in the nanomolar range in a concentration-dependent manner. Neutralization studies using RA human joint synovial fluids and anti-E-selectin antibody showed a mean 31% reduction in RA synovial fluid-mediated monocyte chemotaxis (p < 0.05), indicating that sE-selectin is a major monocyte recruiter in RA. Next, we investigated the role of tyrosine phosphorylation pathways in sE-selectin-induced monocyte chemotaxis. Human peripheral blood monocytes stimulated with sE-selectin showed a time-dependent increase in the tyrosine phosphorylation of a broad range of cellular proteins, predominantly in the molecular size range of Src family kinases (50-60 kDa) and mitogen-activated protein kinases (MAPKs). Western blot analysis of Src family kinases showed a time-dependent increase in Src, Hck, and Lyn phosphorylation. The pretreatment of monocytes with the Src inhibitor AG1879: 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolol[3,4-d]pyrimidine (PP2) prior to stimulation with sE-selectin markedly inhibited Hck and Lyn phosphorylation, whereas the phosphorylation of Src was partially inhibited. In addition, the sE-selectin stimulation of monocytes resulted in the increased phosphorylation of extracellular signal-related kinase (ERK1/2) and p38 MAPK. The pretreatment of monocytes with PP2 showed 89 and 83% inhibition of ERK1/2 and p38 MAPK phosphorylation, respectively. sE-selectin also showed a time-dependent activation of Ras kinase. Furthermore, the pretreatment of monocytes with PP2 completely inhibited sE-selectin-mediated monocyte chemotaxis. Taken together, our data demonstrate a novel function for sE-selectin as a monocyte chemotactic agent and suggest that sE-selectin might be mediating its biological functions through the Src-MAPK pathway.  相似文献   

19.
The Cdc42-like GTPase Wnt responsive Cdc42 homolog 1 (Wrch1) has several atypical features; it has an N-terminal proline-rich extension that confers binding to SH3 domains, and it harbors an extremely high intrinsic nucleotide exchange activity, which overrides the normal GTPase activity. As a result, Wrch1 resides mainly in the active, GTP-loaded conformation under normal cellular conditions. We have previously shown that ectopic expression of Wrch1 in fibroblasts resulted in an altered cell morphology visible as a formation of filopodia, a loss of stress fibers, and a reduction in focal adhesions. Here, we show that Wrch1 binds to the nonreceptor tyrosine kinase Pyk2. The interaction required Wrch1 to be in a GTP conformation and also required an intact N-terminal proline-rich extension as well as an intact effector loop. Wrch1 requires Pyk2 in imposing the cytoskeletal effects, seen as the formation of filopodia, since treatment of cells with a Pyk2-specific small interfering RNA abrogated this response. Interestingly, we found that the presence and activity of Src were needed for the formation of a Wrch1-Pyk2 complex as well as for the Wrch1-induced formation of filopodia. We propose a model in which Pyk2 and Src function to coordinate the Wrch1-dependent effects on cytoskeletal dynamics.  相似文献   

20.
Src kinases involved in hepatitis B virus replication.   总被引:25,自引:0,他引:25       下载免费PDF全文
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号