首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages respond to infection with Legionella pneumophila by the induction of inflammatory mediators, including type I Interferons (IFN-Is). To explore whether the bacterial second messenger cyclic 3'-5' diguanylate (c-diGMP) activates some of these mediators, macrophages were infected with L. pneumophila strains in which the levels of bacterial c-diGMP had been altered. Intriguingly, there was a positive correlation between c-diGMP levels and IFN-I expression. Subsequent studies with synthetic derivatives of c-diGMP, and newly described cyclic 3'-5' diadenylate (c-diAMP), determined that these molecules activate overlapping inflammatory responses in human and murine macrophages. Moreover, UV crosslinking studies determined that both dinucleotides physically associate with a shared set of host proteins. Fractionation of macrophage extracts on a biotin-c-diGMP affinity matrix led to the identification of a set of candidate host binding proteins. These studies suggest that mammalian macrophages can sense and mount a specific inflammatory response to bacterial dinucleotides.  相似文献   

2.
The cyclic nucleotide cyclic di-guanosine-monophosphate (c-diGMP) was recognized in the 1980s as a signaling compound that is involved in controlling the condensation of glucose moieties into cellulose polymers. More recent data from several different bacterial species now suggest that c-diGMP might have a general role as secondary messenger in modulating bacterial growth on surfaces by regulating cellular adhesion components and preparing cells for cell-cell and cell-surface interactions.  相似文献   

3.
Cyclic di-guanylic acid (c-diGMP) is a second messenger that modulates the cell surface properties of several microorganisms. Concentrations of c-diGMP in the cell are controlled by the opposing activities of diguanylate cyclases and phosphodiesterases, which are carried out by proteins harbouring GGDEF and EAL domains respectively. In this study, we report that the cellular levels of c-diGMP are higher in the Vibrio cholerae rugose variant compared with the smooth variant. Modulation of cellular c-diGMP levels by overexpressing proteins with GGDEF or EAL domains increased or decreased colony rugosity respectively. Several genes encoding proteins with either GGDEF or EAL domains are differentially expressed between the two V. cholerae variants. The generation and characterization of null mutants of these genes (cdgA-E, rocS and mbaA) revealed that rugose colony formation, exopolysaccharide production, motility and biofilm formation are controlled by their action. Furthermore, epistasis analysis suggested that cdgC, rocS and mbaA act in convergent pathways to regulate the phenotypic properties of the rugose and smooth variants, and are part of the VpsR, VpsT and HapR signal transduction pathway.  相似文献   

4.
Intestinal epithelial cells are an important site of the host's interaction with enteroinvasive bacteria. Genes in the chromosomally encoded Salmonella pathogenicity island 2 (SPI 2) that encodes a type III secretion system and genes on the virulence plasmid pSDL2 of Salmonella enteritica serovar Dublin (spv genes) are thought to be important for Salmonella dublin survival in host cells. We hypothesized that genes in those loci may be important also for prolonged Salmonella growth and the induction of apoptosis induced by Salmonella in human intestinal epithelial cells. HT-29 human intestinal epithelial cells were infected with wild-type S. dublin or isogenic mutants deficient in the expression of spv genes or with SPI 2 locus mutations. Neither the spv nor the SPI 2 mutations affected bacterial entry into epithelial cells or intracellular proliferation of Salmonella during the initial 8 h after infection. However, at later periods, bacteria with mutations in the SPI 2 locus or in the spv locus compared to wild-type bacteria, manifested a marked decrease in intracellular proliferation and a different distribution pattern of bacteria within infected cells. Epithelial cell apoptosis was markedly increased in response to infection with wild-type, but not the mutant Salmonella. However, apoptosis of epithelial cells infected with wild-type S. dublin was delayed for approximately 28 h after bacterial entry. Apoptosis was preceded by caspase 3 activation, which was also delayed for approximately 24 h after infection. Despite its late onset, the cellular commitment to apoptosis was determined in the early period after infection as inhibition of bacterial protein synthesis during the first 6 h after epithelial cell infection with wild-type S. dublin, but not at later times, inhibited the induction of apoptosis. These studies indicate that genes in the SPI 2 and the spv loci are crucial for prolonged bacterial growth in intestinal epithelial cells. In addition to their influence on intracellular proliferation of Salmonella, genes in those loci determine the ultimate fate of infected epithelial cells with respect to caspase 3 activation and undergoing death by apoptosis.  相似文献   

5.
The PilZ protein was originally identified as necessary for type IV pilus (T4P) biogenesis. Since then, a large and diverse family of bacterial PilZ homology domains have been identified, some of which have been implicated in signaling pathways that control important processes, including motility, virulence and biofilm formation. Furthermore, many PilZ homology domains, though not PilZ itself, have been shown to bind the important bacterial second messenger bis(3′→5′)cyclic diGMP (c-diGMP). The crystal structures of the PilZ orthologs from Xanthomonas axonopodis pv citri (PilZXAC1133, this work) and from Xanthomonas campestris pv campestris (XC1028) present significant structural differences to other PilZ homologs that explain its failure to bind c-diGMP. NMR analysis of PilZXAC1133 shows that these structural differences are maintained in solution. In spite of their emerging importance in bacterial signaling, the means by which PilZ proteins regulate specific processes is not clear. In this study, we show that PilZXAC1133 binds to PilB, an ATPase required for T4P polymerization, and to the EAL domain of FimXXAC2398, which regulates T4P biogenesis and localization in other bacterial species. These interactions were confirmed in NMR, two-hybrid and far-Western blot assays and are the first interactions observed between any PilZ domain and a target protein. While we were unable to detect phosphodiesterase activity for FimXXAC2398in vitro, we show that it binds c-diGMP both in the presence and in the absence of PilZXAC1133. Site-directed mutagenesis studies for conserved and exposed residues suggest that PilZXAC1133 interactions with FimXXAC2398 and PilBXAC3239 are mediated through a hydrophobic surface and an unstructured C-terminal extension conserved only in PilZ orthologs. The FimX-PilZ-PilB interactions involve a full set of “degenerate” GGDEF, EAL and PilZ domains and provide the first evidence of the means by which PilZ orthologs and FimX interact directly with the TP4 machinery.  相似文献   

6.
IL-12 is known to be an essential cytokine which appears to provide protective immunity against intracellular bacteria, such as Salmonella. In this study, we investigated the possibility of developing a vaccine using IL-12 against virulent Salmonella. We used the host defense system activated by cytokine IL-12. The highly virulent Salmonella strain (Salmonella typhimurium UK-1) was transformed with cytokine-expressing plasmids. These live, wild-type pathogens were used as vaccine strains without undergoing any other biological or genetic attenuating processes. The newly developed strains induced partial protection from infections (30-40%). Of note, the interleukin-12-transformed pathogen was safe upon immunization with low doses (10(3) cfu), induced IgG responses, and stimulated protective immune responses against Salmonella typhimurium in mice (80-100%). These results suggest that IL-12 induced attenuation of wild-type Salmonella in the host infection stage and vaccine development using the wild-type strain harboring plasmid-secreting IL-12 may be considered as an alternative process for intracellular bacterial vaccine development without the inconvenience of time-consuming attenuation processes.  相似文献   

7.
Maturation and maintenance of the intracellular vacuole in which Salmonella replicates is controlled by virulence proteins including the type III secretion system encoded by Salmonella pathogenicity island 2 (SPI-2). Here, we show that, several hours after bacterial uptake into different host cell types, Salmonella induces the formation of an F-actin meshwork around bacterial vacuoles. This structure is assembled de novo from the cellular G-actin pool in close proximity to the Salmonella vacuolar membrane. We demonstrate that the phenomenon does not require the Inv/Spa type III secretion system or cognate effector proteins, which induce actin polymerization during bacterial invasion, but does require a functional SPI-2 type III secretion system, which plays an important role in intracellular replication and systemic infection in mice. Treatment with actin-depolymerizing agents significantly inhibited intramacrophage replication of wild-type Salmonella typhimurium . Furthermore, after this treatment, wild-type bacteria were released into the host cell cytoplasm, whereas SPI-2 mutant bacteria remained within vacuoles. We conclude that actin assembly plays an important role in the establishment of an intracellular niche that sustains bacterial growth.  相似文献   

8.
Salmonella entry into epithelial host cells results from the host actin cytoskeleton reorganization that is induced by a group of bacterial proteins delivered to the host cells by the Salmonella type III secretion system. SopE, SopE2 and SopB activate CDC42 and Rac1 to intercept the signal transduction pathways involved in actin cytoskeleton rearrangements. SipA and SipC directly bind actin to modulate the actin dynamics facilitating bacterial entry. Biochemical studies have indicated that SipA decreases the critical concentration for actin polymerization and may be involved in promoting the initial actin polymerization in Salmonella-induced actin reorganization. In this report, we conducted experiments to analyze the in vivo function(s) of SipA during Salmonella invasion. SipA was found to be preferentially associated with peripheral cortical actin filaments but not stress fibres using permeabilized epithelial cells. When polarized Caco-2 cells were infected with Salmonella, actin cytoskeleton rearrangements induced by the wild-type strain had many filopodia structures that were intimately associated with the bacteria. In contrast, ruffles induced by the sipA null mutant were smoother and distant from the bacteria. We also found that the F-actin content in cells infected with the sipA mutant decreased nearly 80% as compared to uninfected cells or those infected with the wild-type Salmonella strain. Furthermore, expression of either the full-length or the SipA(459-684) actin-binding fragment induced prominent punctuate actin assembly in the cortical region of COS-1 cells. These results indicate that SipA is involved in modulating actin dynamics in cultured epithelial cells during Salmonella invasion.  相似文献   

9.
Accessory replicons of species of Salmonella and Shigella.   总被引:1,自引:0,他引:1       下载免费PDF全文
Shigella and Salmonella strains isolated from clinical samples were examined. Out of 42 Shigella strains tested, 17 (40%) were found to be colicinogenic and another 3 were lysogenic. All three lysogens yielded a phage antigenically homologous to coliphage P2. Out of 30 strains tested, only 1 was found to be resistant to both neomycin and sulfamethoxazole. Out of 48 strains of Salmonella tested for drug resistance, only 2 showed multiple drug resistance. In contrast to Shigella isolates, the Salmonella isolates were infrequently (approximately 5%) bacteriocinogenic. The frequency of lysogeny in Salmonella strains was found to be 6% when tested on Salmonella typhimurium LT2, but by using a set of five indicators belonging to species Salmonella potsdam, Salmonella mbadanka, Salmonella dublin, Salmonella london, and Salmonella wandsworth, 50% of the strains were shown to be lysogenic. Salmonella phages related to P22 were recoverable from Salmonella saintpaul, Salmonella indiana, and Salmonella heidelberg. Some isolates of S. typhimurium yielded a temperature-sensitive and P22-heterologous phage which was found to be a more efficient transducer of bacterial genetic markers than P22. EcoRI-generated fragments of the DNA of some phages permitted the establishment of a clonal descent for some of the wild-type lysogenic bacterial strains. This last observation points out the potential usefulness of prophages as epidemiological markers.  相似文献   

10.
Bacteria-generated PtdIns(3)P recruits VAMP8 to facilitate phagocytosis   总被引:2,自引:0,他引:2  
Salmonella enterica serovar Typhimurium invades non-phagocytic cells by inducing macropinocytosis. SopB is involved in modulating actin dynamics to promote Salmonella-induced invasion. We report here that SopB-generated PtdIns(3)P binds VAMP8/endobrevin to promote efficient bacterial phagocytosis. VAMP8 is recruited to Salmonella-induced macropinosomes in a nocodazole-dependent, but Brefeldin A-independent, manner. We found that VAMP8 directly binds to and colocalizes with PtdIns(3)P. The inositol phosphatase activity of SopB is required for PtdIns(3)P and VAMP8 accumulation, while wortmannin, a specific phosphatidylinositol 3-kinase inhibitor, has no effect. Knockdown of endogenous VAMP8 by small interfering RNA or expression of a truncated VAMP8 (1-79aa) reduces the invasion level of wild-type Salmonella to that of the phosphatase-deficient SopB(C460S) mutant. Our study demonstrates that Salmonella exploit host SNARE proteins and vesicle trafficking to promote bacterial entry.  相似文献   

11.
Salmonella typhimurium colonizes the intestinal epithelium by injecting an array of effector proteins into host cells that induces phagocytic uptake of attached bacteria. However, the host molecules targeted by these effectors remain poorly defined. Here, we demonstrate that S. typhimurium induces formation of focal adhesion-like complexes at sites of bacterial attachment and that both focal adhesion kinase (FAK) and the scaffolding protein p130Cas are required for Salmonella uptake. Entry of Salmonella into FAK(-/-) cells is dramatically impaired and can be restored to control levels by expression of wild-type FAK. Surprisingly, reconstitution of bacterial internalization requires neither the kinase domain of FAK nor activation of c-Src, but does require a C-terminal PXXP motif through which FAK interacts with Cas. Infection of Cas(-/-) cells is also impaired, and reconstitution of invasiveness requires the central Cas YXXP repeat domain. The invasion defect in Cas(-/-) cells can be suppressed by overexpression of FAK, suggesting a functional link between FAK and Cas in the regulation of Salmonella invasion. Together, these findings reveal a novel role for focal adhesion proteins in the invasion of host cells by Salmonella.  相似文献   

12.
Salmonella typhimurium is an intracellular bacterium that replicates in the spleen and mesenteric lymph nodes (MLN) of orally infected mice. However, little is known about the Ag presentation and cytokine production capacity of dendritic cells (DC), particularly CD8alpha(+), CD8alpha(-)CD4(-), and CD8alpha(-)CD4(+) DC, from these organs in response to SALMONELLA: Infection of purified splenic DC with S. typhimiurium expressing green fluorescent protein (GFP) and OVA revealed that all three splenic DC subsets internalize bacteria, and splenic as well as MLN DC process Salmonella for peptide presentation. Furthermore, presentation of Salmonella Ags on MHC-I and MHC-II was evident in both CD8alpha(+) and CD8alpha(-) splenic DC subsets. Direct ex vivo analysis of splenic DC from mice infected with GFP-expressing Salmonella showed that all three subsets harbored bacteria, and splenic DC purified from mice given Salmonella-expressing OVA presented OVA-derived peptides on MHC-I and MHC-II. Cytokine production analyzed by intracellular staining of splenic DC infected with GFP-expressing Salmonella revealed that TNF-alpha was produced by a large percentage of CD8alpha(-) DC, while only a minor proportion of CD8alpha(+) DC produced this cytokine following bacterial exposure. In contrast, the greatest number of IL-12p40-producing DC were among CD8alpha(+) DC. Experiments inhibiting bacterial uptake by cytochalasin D as well as use of a Transwell system revealed that bacterial contact, but not internalization, was required for cytokine production. Thus, DC in sites of Salmonella replication and T cell activation, spleen and MLN, respond to bacterial encounter by Ag presentation and produce cytokines in a subset-specific fashion.  相似文献   

13.
Genome plasticity and ori-ter rebalancing in Salmonella typhi   总被引:4,自引:0,他引:4  
Genome plasticity resulting from frequent rearrangement of the bacterial genome is a fascinating but poorly understood phenomenon. First reported in Salmonella typhi, it has been observed only in a small number of Salmonella serovars, although the over 2,500 known Salmonella serovars are all very closely related. To gain insights into this phenomenon and elucidate its roles in bacterial evolution, especially those involved in the formation of particular pathogens, we systematically analyzed the genomes of 127 wild-type S. typhi strains isolated from many places of the world and compared them with the two sequenced strains, Ty2 and CT18, attempting to find possible associations between genome rearrangement and other significant genomic features. Like other host-adapted Salmonella serovars, S. typhi contained large genome insertions, including the 134 kb Salmonella pathogenicity island, SPI7. Our analyses showed that SPI7 disrupted the physical balance of the bacterial genome between the replication origin (ori) and terminus (ter) when this DNA segment was inserted into the genome, and rearrangement in individual strains further changed the genome balance status, with a general tendency toward a better balanced genome structure. In a given S. typhi strain, genome diversification occurred and resulted in different structures among cells in the culture. Under a stressed condition, bacterial cells with better balanced genome structures were selected to greatly increase in proportion; in such cases, bacteria with better balanced genomes formed larger colonies and grew with shorter generation times. Our results support the hypothesis that genome plasticity as a result of frequent rearrangement provides the opportunity for the bacterial genome to adopt a better balanced structure and thus eventually stabilizes the genome during evolution.  相似文献   

14.
In environmental settings, biofilms represent the common way of life of microorganisms. Salmonella enterica serovar Enteritidis, the most frequent cause of gastroenteritis in developed countries, produces a biofilm whose matrix is mainly composed of curli fimbriae and cellulose. In contrast to other bacterial biofilms, no proteinaceous compound has been reported to participate in the formation of this matrix. Here, we report the discovery of BapA, a large cell-surface protein required for biofilm formation by S. Enteritidis. Deletion of bapA caused the loss of the capacity to form a biofilm whereas the overexpression of a chromosomal copy of bapA increased the biofilm biomass formation. We provide evidence that overproduction of curli fimbriae and not cellulose can compensate for the biofilm deficiency of a bapA mutant strain. BapA is secreted through a type I protein secretion system (BapBCD) situated downstream of the bapA gene and was found to be loosely associated with the cell surface. Experiments with mixed bacterial populations positive or negative for BapA showed that BapA minus cells are not recruited into the biofilm matrix. The expression of bapA is coordinated with that of genes encoding curli fimbriae and cellulose, through the action of csgD. Studies on the contribution of BapA to S. Enteritidis pathogenesis revealed that orally inoculated animals with a bapA-deficient strain survived longer than those inoculated with the wild-type strain. Also, a bapA mutant strain showed a significantly lower colonization rate at the intestinal cell barrier and consequently a decreased efficiency for organ invasion compared with the wild-type strain. Taken together, these data demonstrate that BapA contributes both to biofilm formation and invasion through the regular Salmonella infection route.  相似文献   

15.
Entry of Salmonella into mammalian cells is strictly dependent on the reorganization of actin cytoskeleton induced by a panel of Salmonella type III secreted proteins. Although several factors have been identified to be responsible for inducing the actin polymerization and stability, little is known about how the actin depolymerization contributes to Salmonella-induced actin rearrangements. We report here that activity cycles of host actin depolymerizing factor (ADF and cofilin) are modulated by Salmonella during bacterial entry. Efficient Salmonella internalization involves an initial dephosphorylation of ADF and cofilin followed by phosphorylation, suggesting that ADF and cofilin activities are increased briefly. Expression of a kinase dead form of an ADF/cofilin kinase (LIM kinase 1) or a catalytically inactive ADF/cofilin phosphatase (Slingshot), but not constitutively active LIM kinase 1 or wild-type Slingshot, resulted in decreased invasion. These data suggest that ADF/cofilin activities play a key role in the actin polymerization/depolymerization process induced by Salmonella. The activation of ADF/cofilin is brief and has to be reversed to facilitate efficient bacterial entry. Surprisingly, co-expression of constitutive active ADF and cofilin prevented efficient Salmonella entry, whereas expression of either one alone had no effect. We propose that ADF and cofilin actin-dynamizing activities and their activity cycling via phosphorylation are required for efficient Salmonella internalization.  相似文献   

16.
17.
Mechanisms by which Salmonella establish chronic infections are not well understood. Microbes respond to stress by importing or producing compatible solutes, small molecules that stabilize proteins and lipids. The Salmonella locus opuABCD (also called OpuC) encodes a predicted importer of the compatible solute glycine betaine. Under stress conditions, if glycine betaine cannot be imported, Salmonella enterica produce the disaccharide trehalose, a highly effective compatible solute. We demonstrate that strains lacking opuABCD accumulate more trehalose under stress conditions than wild-type strains. ΔopuABCD mutant strains are more resistant to high-salt, low-pH and -hydrogen peroxide, conditions that mimic aspects of innate immunity, in a trehalose-dependent manner. In addition, ΔopuABCD mutant strains require the trehalose production genes to out-compete wild-type strains in mice and macrophages. These data suggest that in the absence of opuABCD, trehalose accumulation increases bacterial resistance to stress in broth and mice. Thus, opuABCD reduces bacterial colonization via a mechanism that limits trehalose production. Mechanisms by which microbes limit disease may reveal novel pathways as therapeutic targets.  相似文献   

18.
A nonflagellated mutant of Salmonella enterica serotype Enteritidis was constructed by disrupting the flagellin gene (fliC). Northern blot analysis indicated that the mutation did not affect expression of the downstream fliU gene. Infection experiments with differentiated Caco-2 cells revealed that the mutant was about 50-fold less invasive than the wild-type strain, while bacterial adherence was unaffected. Complementation of the mutant with an intact fliC copy restored flagella formation and efficient bacterial invasion. Our data demonstrate that the fliC gene of S. enterica serotype Enteritidis is essential for the invasion of Caco-2 cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号