首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-seven cold-sensitive mutants of Neurospora crassa were isolated by mutagenesis of wild-type conidia followed by filtration enrichment in complete medium at the nonpermissive temperature (10 C). Zone sedimentation analyses of cytoplasmic ribosomes isolated from the wild-type strain and from 14 of the mutant strains grown at 10 C indicate that one cold-sensitive mutant is defective in ribosome biosynthesis at that temperature: instead of the 2.3:1 mass ratio of 60S:37S ribosomal subunits characteristic of wild type, the mutant strain PJ30201 (called crib-1 for cytoplasmic ribosome biosynthesis) exhibits a mass ratio of approximately 7.2:1. Ribosomal subunits synthesized by strain PJ30201 at 25 C are present in wild-type proportions. The cold-sensitive and ribosomal phenotypes segregate together in tetrads isolated from crosses between strain PJ30201 and the wild type indicating that a single nuclear gene mutation is probably responsible for both mutant phenotypes. The crib-1 locus lies near the centromere in linkage group IV.  相似文献   

2.
Synthesis of mature 28-S ribosomal RNA and 60-S ribosomal subunits is inhibited in baby hamster kidney (BHK) cell line ts 422E at non-permissive temperature (39 degrees C). This leads to a 66% decrease of total ribosomes per cell, a marked imbalance between the large and small ribosomal subunits in the cytoplasm and a decrease of cells per dish after prolonged culture at 30 degrees C. However, inhibition of ribosome synthesis does not affect progression of cells through the G1 period of the cell division cycle, the length of the pre-replicative period, and the rate of entry of cells into S phase. In contrast to culture at non-permissive temperature, culture of BHK ts 422E cells in the presence of 0.04 micrograms/ml actinomycin D at 33 degrees C inhibits markedly the entry into S period. It is concluded that low doses of actinomycin D exert their inhibitory effect on cell growth by preventing maturation and transport of mRNA rather than by interfering with ribosome synthesis. Microfluorometric analysis revealed only slight differences in the distribution of BHK ts 422E cells in G1, S and G2 phases of the cycle either when cultured at 33 degrees C or at 39 degrees C. When too few ribosomes per cell are produced in BHK ts 422E cells at 39 degrees C, cells do not seem to be arrested reversibly at a specific point of the cell cycle but rather to die at random.  相似文献   

3.
Addition of rifampicin to growing cells of Escherichia coli affected the ribosomes. The polyribosomes first decayed to 70S ribosomes. These later dissociated to particles distinct from ribosomal subunits. The altered ribosomes sedimented more slowly than the corresponding subunits and had lost some protein; their ribosomal RNA was intact, but they were more susceptible to degradation by ribonuclease than normal ribosomes. The addition of rifampicin to preparations of lysed cells caused no detectable changes in the ribosome fraction.  相似文献   

4.
Functional ribosomes synthesize proteins in all living cells and are composed of two labile associated subunits, which are made of rRNA and ribosomal proteins. The rRNA of the small 40S subunit (SSU) of the functional eukaryotic 80S ribosome decodes the mRNA molecule and the large 60S subunit (LSU) rRNA catalyzes protein synthesis. Recent fine structure determinations of the ribosome renewed interest in the role of ribosomal proteins in modulation of the core ribosomal functions. RpL10/Grc5p is a component of the LSU and is a multifunctional translational regulator, operating in 60S subunit biogenesis, 60S subunit export and 60S subunit joining with the 40S subunit. Here, we report that rpL10/Grc5p functionally interacts with the nuclear export factor Nmd3p in modulation of the cellular polysome complement and with the small subunit protein rpS6 in subunit joining and differential protein expression.  相似文献   

5.
《FEMS yeast research》2005,5(3):271-280
Functional ribosomes synthesize proteins in all living cells and are composed of two labile associated subunits, which are made of rRNA and ribosomal proteins. The rRNA of the small 40S subunit (SSU) of the functional eukaryotic 80S ribosome decodes the mRNA molecule and the large 60S subunit (LSU) rRNA catalyzes protein synthesis. Recent fine structure determinations of the ribosome renewed interest in the role of ribosomal proteins in modulation of the core ribosomal functions. RpL10/Grc5p is a component of the LSU and is a multifunctional translational regulator, operating in 60S subunit biogenesis, 60S subunit export and 60S subunit joining with the 40S subunit. Here, we report that rpL10/Grc5p functionally interacts with the nuclear export factor Nmd3p in modulation of the cellular polysome complement and with the small subunit protein rpS6 in subunit joining and differential protein expression.  相似文献   

6.
Assembly helpers exist for the formation of ribosomal subunits. Such a function has been suggested for the DnaK system of chaperones (DnaK, DnaJ, GrpE). Here we show that 50S and 30S ribosomal subunits from an Escherichia coli dnaK-null mutant (containing a disrupted dnaK gene) grown at 30 degrees C are physically and functionally identical to wild-type ribosomes. Furthermore, ribosomal components derived from mutant 30S and 50S subunits are fully competent for in vitro reconstitution of active ribosomal subunits. On the other hand, the DnaK chaperone system cannot circumvent the necessary heat-dependent activation step for the in vitro reconstitution of fully active 30S ribosomal subunits. It is therefore questionable whether the requirement for DnaK observed during in vivo ribosome assembly above 37 degrees C implicates a direct or indirect role for DnaK in this process.  相似文献   

7.
Role of the 5.8S rRNA in ribosome translocation.   总被引:1,自引:0,他引:1       下载免费PDF全文
Studies on the inhibition of protein synthesis by specific anti 5.8S rRNA oligonucleotides have suggested that this RNA plays an important role in eukaryotic ribosome function. Mutations in the 5. 8S rRNA can inhibit cell growth and compromise protein synthesis in vitro . Polyribosomes from cells expressing these mutant 5.8S rRNAs are elevated in size and ribosome-associated tRNA. Cell free extracts from these cells also are more sensitive to antibiotics which act on the 60S ribosomal subunit by inhibiting elongation. The extracts are especially sensitive to cycloheximide and diphtheria toxin which act specifically to inhibit translocation. Studies of ribosomal proteins show no reproducible changes in the core proteins, but reveal reduced levels of elongation factors 1 and 2 only in ribosomes which contain large amounts of mutant 5.8S rRNA. Polyribosomes from cells which are severely inhibited, but contain little mutant 5.8S rRNA, do not show the same reductions in the elongation factors, an observation which underlines the specific nature of the change. Taken together the results demonstrate a defined and critical function for the 5.8S rRNA, suggesting that this RNA plays a role in ribosome translocation.  相似文献   

8.
The RimM protein in Escherichia coli is associated with free 30S ribosomal subunits but not with 70S ribosomes and is important for efficient maturation of the 30S subunits. A mutant lacking RimM shows a sevenfold-reduced growth rate and a reduced translational efficiency. Here we show that a double alanine-for-tyrosine substitution in RimM prevents it from associating with the 30S subunits and reduces the growth rate of E. coli approximately threefold. Several faster-growing derivatives of the rimM amino acid substitution mutant were found that contain suppressor mutations which increased the amount of the RimM protein by two different mechanisms. Most of the suppressor mutations destabilized a secondary structure in the rimM mRNA, which previously was shown to decrease the synthesis of RimM by preventing the access of the ribosomes to the translation initiation region on the rimM mRNA. Three other independently isolated suppressor mutations created a fusion between rpsP, encoding the ribosomal protein S16, and rimM on the chromosome as a result of mutations in the rpsP stop codon preceding rimM. A severalfold-higher amount of the produced hybrid S16-RimM protein in the suppressor strains than of the native-sized RimM in the original substitution mutant seems to explain the suppression. The S16-RimM protein but not any native-size ribosomal protein S16 was found both in free 30S ribosomal subunits and in translationally active 70S ribosomes of the suppressor strains. This suggests that the hybrid protein can substitute for S16, which is an essential protein probably because of its role in ribosome assembly. Thus, the S16-RimM hybrid protein seems capable of carrying out the important functions that native S16 and RimM have in ribosome biogenesis.  相似文献   

9.
Summary Ribosomes and ribosomal proteins from wild-type and a yellow mutant of Chlamydomonas reinhardii were analysed and compared by two-dimensional gel electrophoresis.Mixothrophycally grown yellow-27 mutant differs from wild-type cells in lowered chlorophyll content and grana fromation of the chloroplast.Analytical ultracentrifuge analyses of cell extracts show a reduced amount of free 70S ribosomes and increased level of 50S subunits in the mutant cells. Similar results were obtained by electronmicroscopical method.Two-dimensional gel electrophoresis shows alterations in protein composition of 70S ribosomes of the mutant. Two proteins of 70S ribosomes have been altered. One of them with high molecular weight is practically absent while there is an additional, intensively stained spot in the mutant.Since the mutation is inherited in a non-Mendelian manner it is possible that the protein alterations in 70S ribosome are localized in the chloroplast DNA.  相似文献   

10.
Aspergillus fumigatus is an important opportunistic fungal pathogen that is responsible for high mortality rates in the immunosuppressed population. CgrA, the A. fumigatus ortholog of a Saccharomyces cerevisiae nucleolar protein involved in ribosome biogenesis, contributes to the virulence of this fungus by supporting rapid growth at 37 degrees C. To determine how CgrA affects ribosome biogenesis in A. fumigatus, polysome profile and ribosomal subunit analyses were performed on both wild-type A. fumigatus and a DeltacgrA mutant. The loss of CgrA was associated with a reduction in the level of 80S monosomes as well as an imbalance in the 60S:40S subunit ratio and the appearance of half-mer ribosomes. The gene expression profile in the DeltacgrA mutant revealed increased abundance of a subset of translational machinery mRNAs relative to the wild type, suggesting a potential compensatory response to CgrA deficiency. Although DeltacgrA conidia germinated normally at 22 degrees C, they swelled excessively when incubated at 37 degrees C and accumulated abnormally high numbers of nuclei. This hypernucleated phenotype could be replicated pharmacologically by germinating wild-type conidia under conditions of reductive stress. These findings indicate that the germination process is particularly vulnerable to global disruption of protein synthesis and suggest that CgrA is involved in both ribosome biogenesis and polarized cell growth in A. fumigatus.  相似文献   

11.
Recently a ribosome dissociation factor that stimulates natural mRNA translation has been isolated from extracts of wheat germ. In this investigation, we have studied the subunit site of action of the purified ribosome dissociation factor (eucaryotic initiation), eIF-6. The following evidence strongly indicates that eIF-6 acts as a dissociation factor by binding to the 60 S ribosomal subunit and preventing its interaction with the 40 S subunit. Incubation of 60 S subunits with eIF-6 reduces the formation of 80 S monosomes when 40 S subunits are subsequently added at 5 mm Mg2+. The 40 S subunits preincubated with eIF-6 reassociate normally with 60 S subunits. 14C-labeled eIF-6 binds to 60 S subunits but not to 40 S subunits. Slight binding to 80 S ribosomes is also observed. The interaction of eIF-6 with the 60 S subunit requires an elevated temperature, and occurs rapidly at 37 °C.  相似文献   

12.
Four mutant strains from Saccharomyces cerevisiae were used to study ribosome structure and function. They included a strain carrying deletions of the two genes encoding ribosomal protein L24, a strain carrying a mutation spb2 in the gene for ribosomal protein L39, a strain carrying a deletion of the gene for L39, and a mutant lacking both L24 and L39. The mutant lacking only L24 showed just 25% of the normal polyphenylalanine-synthesizing activity followed by a decrease in P-site binding, suggesting the possibility that protein L24 is involved in the kinetics of translation. Each of the two L39 mutants displayed a 4-fold increase of their error frequencies over the wild type. This was accompanied by a substantial increase in A-site binding, typical of error-prone mutants. The absence of L39 also increased sensitivity to paromomycin, decreased the ribosomal subunit ratio, and caused a cold-sensitive phenotype. Mutant cells lacking both ribosomal proteins remained viable. Their ribosomes showed reduced initial rates caused by the absence of L24 but a normal extent of polyphenylalanine synthesis and a substantial in vivo reduction in the amount of 80S ribosomes compared to wild type. Moreover, this mutant displayed decreased translational accuracy, hypersensitivity to the antibiotic paromomycin, and a cold-sensitive phenotype, all caused mainly by the deletion of L39. Protein L39 is the first protein of the 60S ribosomal subunit implicated in translational accuracy.  相似文献   

13.
The effects of incubation of yeast spheroplasts at elevated temperature (40 degrees C) on a number of activities involved in protein biosynthesis have been examined in preparations obtained from wild-type cells (wt A364A ) and a temperature-sensitive mutant (ts 7-45) derived from it. With wild-type cells, preincubation of spheroplasts at the elevated temperature had little or no effect on the following: the ribosomal subunit-polysome pattern; the translation of exogenous natural mRNA in postpolysomal extracts devoid of endogenous mRNA; the translation of poly(U) in postpolysomal extracts; the incorporation of methionine into 40 S preinitiation and 80 S initiation complexes; the synthesis of Met-tRNA in postribosomal (cytosol) extracts; and the formation of eIF-2 X GTP X Met-tRNAf ternary complex in the cytosol. With temperature-sensitive spheroplasts that had not been preincubated at the elevated temperature, the concentration of free, native 40 S subunits appeared to be lower and that of 60 S subunits higher than in wild-type cells; translation of exogenous natural mRNA in postpolysomal extracts was somewhat lower than in wild-type preparations, but all of the other reactions and components measured were comparable to those in wild-type preparations. Preincubation of temperature-sensitive spheroplasts at 40 degrees C resulted in: a further decrease in the level of 40 S subunits; disaggregation of polysomes; loss of ability to translate natural mRNA but not poly(U); decreased ability to form 40 S preinitiation intermediates; and production of an activity, found in the cytosol, that inhibited Met-tRNA synthetase reversibly. The inhibitor had the characteristics of a protein and did not appear to be a proteinase, nuclease, or nucleotidase.  相似文献   

14.
In the crystal structure of the 30S ribosomal subunit from Thermus thermophilus, cysteine 24 of ribosomal protein S14 (TthS14) occupies the first position in a CXXC-X12-CXXC motif that coordinates a zinc ion. The structural and functional importance of cysteine 24, which is widely conserved from bacteria to humans, was studied by its replacement with serine and by incorporating the resulting mutant into Escherichia coli ribosomes. The capability of such modified ribosomes in binding tRNA at the P and A-sites was equal to that obtained with ribosomes incorporating wild-type TthS14. In fact, both chimeric ribosomal species exhibited 20% lower tRNA affinity compared with native E. coli ribosomes. In addition, replacement of the native E. coli S14 by wild-type, and particularly by mutant TthS14, resulted in reduced capability of the 30S subunit for association with 50S subunits. Nevertheless, ribosomes from transformed cells sedimented normally and had a full complement of proteins. Unexpectedly, the peptidyl transferase activity in the chimeric ribosomes bearing mutant TthS14 was much lower than that measured in ribosomes incorporating wild-type TthS14. The catalytic center of the ribosome is located within the 50S subunit and, therefore, it is unlikely to be directly affected by changes in the structure of S14. More probably, the perturbing effects of S14 mutation on the catalytic center seem to be propagated by adjacent intersubunit bridges or the P-site tRNA molecule, resulting in weak donor-substrate reactivity. This hypothesis was verified by molecular dynamics simulation analysis.  相似文献   

15.
16.
Accessible single-strand bases in Xenopus laevis 28 S ribosomal RNA (rRNA) Domain V, the peptidyl transferase region, were determined by chemical modification with dimethylsulfate, 1-cyclohexyl-3-(2-morpholinoethyl-carbodiimide metho-p-toluene sulfonate and kethoxal, followed by primer extension. The relative accessibilities of three rRNA substrates were compared: deproteinized 28 S rRNA under non-denaturing conditions (free 28 S rRNA), 60 S subunits and 80 S ribosomes. Overall, our experimental results support the theoretical secondary structure model of Domain V derived by comparative sequence analysis and compensatory base-pair changes, and support some theoretical tertiary interactions previously suggested by covariation. The 60 S subunits and 80 S ribosomes generally show increasing resistance to chemical modification. Bases which are sensitive in free 28 S rRNA but protected in 60 S subunits may be sites for ribosomal protein binding or induced structural rearrangements. Another class of nucleotides is distinguished by its sensitivity in 60 S subunits but protection in 80 S ribosomes; these nucleotides may be involved in subunit-subunit interactions or located at the interface of the ribosome. We found a third class of bases, which is protected in free 28 S rRNA but sensitive in 60 S subunits and/or 80 S ribosomes, suggesting that structural changes occur in Domain V as a result of subunit assembly and ribosome formation. One such region is uniquely hypersensitive in eukaryotic ribosomes but is absent in Escherichia coli ribosomes. Sites that we determined to be accessible on empty 80 S ribosomes could serve as recognition sites for translation components.  相似文献   

17.
The internal ribosome entry site within the intergenic region (IGR IRES) of the Dicistroviridae family mimics a tRNA to directly assemble 80 S ribosomes and initiate translation at a non-AUG codon from the ribosomal A-site. A comparison of IGR IRESs within this viral family reveals structural similarity but little sequence similarity. However, a few specific conserved elements exist, which likely have important roles in IRES function. In this study, we have generated a battery of mutations to characterize the role of a conserved loop (L1.1) region of the IGR IRES. Mutating specific nucleotides within the L1.1 region inhibited IGR IRES-mediated translation in rabbit reticulocyte lysates. By assaying different steps in IRES function, we found that the mutant L1.1 IRESs had reduced affinity for 80 S ribosomes but not 40 S subunits, indicating that the L1.1 region mediated either binding to preformed 80 S or 60 S joining. Furthermore, mutations in L1.1 altered the position of the ribosome on the mutant IRES, indicating that the tRNA-like anticodon/codon mimic within the ribosomal P-site is disrupted. Structural studies have revealed that the L1.1 region interacts with the L1 stalk of the 60 S subunit, which is similar to the interactions between the T-loop of the E-site tRNA and ribosomal protein rpL1. Our results demonstrate that the conserved L1.1 region directs multiple steps in IGR IRES-mediated translation including ribosome binding and positioning, which are functions that the E-site tRNA may normally mediate during translation.  相似文献   

18.
Reconstitution experiments with 50 S ribosomal subunits from Bacillus stearothermophilus demonstrate that spinach chloroplast 5 S rRNA can be incorporated into the bacterial ribosome and yield biologically active particles, thereby establishing the eubacterial nature of chloroplast 5 S rRNA. In contrast, mitochondria from Locusta migratoria or bovine liver do not appear to contain discrete, low-Mr RNAs, which can replace 5 S rRNA in the functional reconstitution of B. stearothermophilus ribosomes.  相似文献   

19.
Eukaryotic ribosomal proteins are required for production of stable ribosome assembly intermediates and mature ribosomes, but more specific roles for these proteins in biogenesis of ribosomes are not known. Here we demonstrate a particular function for yeast ribosomal protein rpS14 in late steps of 40S ribosomal subunit maturation and pre-rRNA processing. Extraordinary amounts of 43S preribosomes containing 20S pre-rRNA accumulate in the cytoplasm of certain rps14 mutants. These mutations not only reveal a more precise function for rpS14 in ribosome biogenesis but also uncover a role in ribosome assembly for the extended tails found in many ribosomal proteins. These studies are one of the first to relate the structure of eukaryotic ribosomes to their assembly pathway-the carboxy-terminal extension of rpS14 is located in the 40S subunit near the 3' end of 18S rRNA, consistent with a role for rpS14 in 3' end processing of 20S pre-rRNA.  相似文献   

20.
The binding of ribosomal subunits to endoplasmic reticulum membranes   总被引:11,自引:6,他引:5       下载免费PDF全文
The binding of ribosomes and ribosomal subunits to endoplasmic reticulum preparations of mouse liver was studied. (1) Membranes prepared from rough endoplasmic reticulum by preincubation with 0.5m-KCl and puromycin bound 60-80% of added 60S subunits and 10-15% of added 40S subunits. Membranes prepared with pyrophosphate and citrate showed less clear specificity for 60S subunits particularly when assayed at low ionic strengths. (2) Ribosomal 40S subunits bound efficiently to membranes only in the presence of 60S subunits. The reconstituted membrane-60S subunit-40S subunit complex was active in synthesis of peptide bonds. (3) No differences in binding to membranes were seen between subunits derived from free and from membrane-bound ribosomes. (4) It is concluded that the binding of ribosomes to membranes does not require that they be translating a messenger RNA, and that the mechanism whereby bound and free ribosomes synthesize different groups of proteins does not depend on two groups of ribosomes that differ in their ability to bind to endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号