首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induced thermotolerance in murine embryos occurs at the 8-cell stage when embryos are maintained in vitro but not until the blastocyst stage if development proceeds in vivo. Present results indicate that ability of embryos to undergo induced thermotolerance is not limited by heat shock protein 70 (HSP70) synthesis. Exposure of 8-cell embryos to 40 degrees C enhanced synthesis of 2 constitutive HSP70 proteins (HSC70 and HSC72) and induced another protein, HSP68; exposure of 43 degrees C was required to induce similar responses in expanded blastocysts. Unlike induced thermotolerance, increased synthesis of HSP70 molecules did not depend on whether embryos were cultured or developed in vivo. Thus, other biochemical mechanisms in addition to HSP70 confer thermotolerance in the preimplantation-stage murine embryo. The observation that the temperature threshold for induction of HSP70 synthesis increased from the 8-cell to the blastocyst stage is indicative of these other biochemical processes.  相似文献   

2.
Induced thermotolerance is a phenomenon whereby exposure to a mild heat shock can induce heat shock proteins (HSP) and other cellular changes to make cells more resistant to a subsequent, more severe heat shock. Given that the 2-cell bovine embryo is very sensitive to heat shock, but can also produce HSP70 in response to elevated temperature, experiments were conducted to test whether 2-cell embryos could be made to undergo induced thermotolerance. Another objective was to test the role of the heat-inducible form of heat shock protein 70 (HSP70i) in development and sensitivity of bovine embryos to heat shock. To test for induced thermotolerance, 2-cell bovine embryos were first exposed to a mild heat shock (40 degrees C for 1 hr, or 41 degrees C or 42 degrees C for 80 min), allowed to recover at 38.5 degrees C and 5% (v/v) CO2 for 2 hr, and then exposed to a severe heat shock (41 degrees C for 4.5, 6, or 12 hr). Regardless of the conditions, previous exposure to mild heat shock did not reduce the deleterious effect of heat shock on development of embryos to the blastocyst stage. The role of HSP70i in embryonic development was tested in two experiments by culturing embryos with a monoclonal antibody to the inducible form of HSP70. At both 38.5 degrees C and 41 degrees C, the proportion of 2-cell embryos that developed to blastocyst was reduced (P < 0.05) by addition of anti-HSP70i to the culture medium. In contrast, sensitivity to heat shock was not generally increased by addition of antibody. In conclusion, bovine 2-cell embryos appear incapable of induced thermotolerance. Lack of capacity for induced thermotolerance could explain in part the increased sensitivity of 2-cell embryos to heat shock as compared to embryos at later stages of development. Results also implicate a role for HSP70i in normal development of bovine embryos.  相似文献   

3.
Summary Objectives were to characterize developmental changes in response to heat shock in the preimplantation mouse embryo and to evaluate whether ability to synthesize glutathione is important for thermal resistance in mouse embryos. Heat shock (41° C for 1 or 2 h) was most effective at disrupting development to the blastocyst stage when applied to embryos at the 2-cell stage that were delayed in development. Effects of heat shock on ability of embryos to undergo hatching were similar for 2-cell, 4-cell, and morula stage embryos. The phenomenon of induced thermotolerance, for which exposure to a mild heat shock increases resistance to a more severe heat shock, depended upon stage of development and whether embryos developed in vitro or in vivo. In particular, induced thermotolerance was observed for morulae derived from development in vivo but not for 2-cell embryos or morulae that developed in culture. Administration of buthionine sulfoximine to inhibit glutathione synthesis did not increase thermal sensitivity of 2-cell embryos or morulae but did reduce subsequent development of 2-cell embryos at both 37° and 41° C. In summary, changes in the ability of 2-cell through morula stages to continue to develop following a single heat shock were generally minimal. However, 2-cell embryos delayed in development had reduced thermal resistance, and therefore, maternal heat stress may be more likely to cause mortality of embryos that are already compromised in development. There were also developmental changes in the capacity of embryos to undergo induced thermotolerance. Glutathione synthesis was important for development of embryos but inhibition of glutathione synthesis did not make embryos more susceptible to heat shock.  相似文献   

4.
The ability to synthesize a 68,000- to 70,000-Da protein (hsp) in heat-shocked early Xenopus laevis embryos is dependent on the stage of development. Whereas late blastula and later stage embryos synthesize hsp68-70 after heat shock, cleavage stages are incompetent with respect to hsp synthesis. In vitro translation experiments and RNA blot analyses demonstrate that enhanced synthesis of hsp68-70 is associated with an accumulation of hsp68-70 mRNA. Examination of the effect of heat shock on preexisting actin mRNA reveals that heat shock promotes a reduction in the levels of actin mRNA in cleavage embryos but has no discernible effect on actin mRNA levels in neurula embryos. Finally, the acquisition of the heat-shock response (i.e., synthesis of hsp68-70 and accumulation of hsp70 mRNA) during early Xenopus development is correlated with the acquisition of thermotolerance.  相似文献   

5.
Postimplantation stage rat embryos (6-10 somites) undergo abnormal development after exposure to a temperature of 43 degrees C for 30 min. A heat shock of 43 degrees C for 30 min also induces the synthesis of a set of eight heat shock proteins (hsps) with molecular masses ranging from 28,000 to 82,000 Da. The synthesis of these hsps is rapidly induced after the heat shock is applied and rapidly decays after embryos are returned to 37 degrees C. A heat shock of 42 degrees C for 30 min has no effect on rat embryo growth and development, but does induce the synthesis of three hsps. The most prominent of these three is believed to be the typical mammalian 70 kDa hsp. Furthermore, a 42 degrees C, 30-min heat shock followed by a 43 degrees C 30-min heat shock leads to partial protection from the embryotoxic effects of a single exposure at 43 degrees C, i.e., thermotolerance.  相似文献   

6.
7.
During early development, elevated temperatures have deleterious effects on embryonic viability and development. The primary objective of the current study was to determine the ontogeny of induced thermotolerance during early murine embryonic development. Embryos were either retrieved from superovulated ICR female mice at the 2 cell and 4 cell stages and cultured thereafter or were retrieved from oviducts or uterine horns at the desired stage of development. Induction of thermotolerance was detected by evaluating viability and further development after embryos were exposed to homeothermic temperature (37°C), mild heat shock (40°C for 1 h), severe heat shock (42°C for 1 h or 43°C for 2 h), or mild heat shock followed by severe heat shock (to induce thermotolerance). Induction of thermotolerance was observed beginning at the 8 cell stage when embryos were developed in culture from the 2 cell to 4 cell stage. When embryos were developed in vivo (i.e., were retrieved from the reproductive tract at the desired stage of development), thermotolerance was not induced until the blastocyst stage of development. The induction of thermotolerance was dependent on serum supplementation since induction of thermotolerance was not observed when embryos were placed in medium without serum. Induced thermotolerance could also be demonstrated in bovine blastocysts. In conclusion, embryos acquire the ability to undergo thermotolerance as they progress through development. The timing of processes leading to acquisition of thermotolerance can, however, be hastened by exposure of embryos to in vitro conditions.  相似文献   

8.
The objectives of this study were to determine the ability of trophectoderm from preimplantation ovine embryos to synthesize hsp70 in response to heat shock and to identify conditions which induce translational thermotolerance in this tissue. Day 15 embryos were collected, and proteins synthesized in 1.5-mm sections of trophectoderm were radioactively labeled with (35)S-methionine. One-dimensional SDS-PAGE gels, two-dimensional gel electrophoresis and Western blots were utilized to characterize the heat shock response and to examine the induction of translational thermotolerance. Increased synthesis of the 70 kDa heat shock proteins and a protein with an approximate molecular weight of 15 to 20 kDa was observed with heat shock (> or = 42 degrees C). Total protein synthesis decreased (P < 0.05) with increased intensity of heat shock. At 45 degrees C, protein synthesis was suppressed with little or no synthesis of all proteins including hsp70. Recovery of protein synthesis following a severe heat shock (45 degrees C for 20 min) occurred faster (P < 0.05) in trophectoderm pretreated with a mild heat shock (42 degrees C for 30 min) than trophectoderm not pretreated with mild heat. In summary, trophoblastic tissue obtained from ovine embryos exhibit the characteristic "heatshock" response similar to that described for other mammalian systems. In addition, a sublethal heat shock induced the ability of the tissue to resume protein synthesis following severe heat stress. Since maintaining protein synthesis is crucial to embryonic survival, manipulation of the heat-shock response may provide a method to enhance embryonic survival.  相似文献   

9.
Stress proteins by zinc ions in sea urchin embryos   总被引:2,自引:0,他引:2  
In Paracentrotus lividus embryos, treatment with zinc ions induces the synthesis of the two major stress proteins with the same molecular weight as those induced by heat shock. The developmental stages responsive to zinc ion treatment are the same as those responsive to heat shock. However, zinc treatment induces a longer lasting synthesis of the stress proteins, and, unlike heat shock, does not induce thermotolerance and does not inhibit synthesis of the bulk proteins.  相似文献   

10.
In the fungus Blastocladiella emersonii the synthesis of heat-shock proteins is developmentally regulated; particular subsets of heat-shock proteins are induced by heat shock during sporulation, germination and growth and some heat shock-related proteins are spontaneously expressed during sporulation (Bonato et al., 1987, Eur. J. Biochem., in press). Nevertheless, acquisition of thermotolerance can be induced at any stage of the life cycle. The development of thermotolerance is correlated with the enhanced synthesis of some heat-shock proteins: hsp 82a, hsp 82b, hsp 76, hsp 70, hsp 60, hsp 25, hsp 17b. Other hsps are not specifically involved in thermotolerance.  相似文献   

11.
Early embryos are not as passive as previously thought. In the bovine, embryos as early as the 2-cell stage can respond to environmental insults at both the cellular and molecular level by altering expression of specific genes and synthesis of proteins. Moreover, sex related differences exist in how early embryos respond to otherwise hostile environments. As aggressive as early embryos may be to tolerate environment insults, the majority will fail to continue in development. Reduced developmental potential of embryos exposed to elevated temperatures is likely due to direct effects on the early embryo. However, as embryos proceed in development they acquire the ability to better withstand environmental insults. Developmental acquisition of tolerance to environmental stress may be contingent upon acquisition of protective biochemical mechanisms or simply due to increased cell numbers. Correlative evidence has suggested a potential role of heat shock protein 70 and glutathione for protection of embryos in face of elevated temperature. Of these two possibilities, HSP70 appears least likely to play a significant role in developmental acquisition of thermotolerance. Bovine embryos as early as the 2-cell stage, are able to mount a heat shock response; a developmental stage that is most sensitive to elevated temperatures. A more likely candidate for conferring increased resistance of early embryos to elevated temperature is glutathione.  相似文献   

12.
The effect of incubation temperature, before and after a heat shock, on thermotolerance of Listeria monocytogenes at 58°C was investigated. Exposing cells grown at 10°C and 30°C to a heat shock resulted in similar rises in thermotolerance while the increase was significantly higher when cells were grown at 4°C prior to the heat shock. Cells held at 4°C and 10°C after heat shock maintained heat shock-induced thermotolerance for longer than cells held at 30°C. The growth temperature prior to inactivation had negligible effect on the persistence of heat shock-induced thermotolerance. Concurrent with measurements of thermotolerance were measurements of the levels of heat shock-induced proteins. Major proteins showing increased synthesis upon the heat shock had approximate molecular weights of 84, 74, 63, 25 and 19 kDa. There was little correlation between the loss of thermotolerance after the heat shock and the levels of these proteins. Thermotolerance of heat shocked and non-heat shocked cells was described by traditional log-linear kinetics and a model describing a sigmoidal death curve (logistic model). Employing log-linear kinetics resulted in a poor fit to a major part of the data whereas a good fit was achieved by the use of a logistic model.  相似文献   

13.
Studies were initiated to determine the extent to which reduced glutathione (GSH) may be involved in the capacity of cultured rat embryos to develop heat-induced tolerance to the deleterious effects of exposure to high temperatures (heat shock). Investigations of the modulation of dysmorphogenic responses of embryos to heat shock (43 degrees C, 30 min) as well as to the expression of the hsp70 gene and subsequent formation of hsps indicated that the acquisition of thermotolerance by rat embryos could be significantly influenced by the inhibition of GSH synthesis. Treatment of conceptuses with L-buthionine-S,R-sulfoximine (BSO) reduced intracellular GSH concentrations and compromised the capacity of embryos to mount a thermotolerance response as assessed by alterations in indices of growth and development. Embryonic thermotolerance elicited by preexposure to 42 degrees C for 30 min was accompanied by increases in GSH to levels greater than those measured in control embryos at 37 degrees C just prior to the subsequent 43 degrees C heat exposure. Expression of hsp70 mRNA was detectable soon after elevation of the temperature to 42 degrees C and reached its highest level of accumulation 1.5 hr after the 43 degrees C heat shock. BSO treatment had little if any effect on hsp70 message levels or on the synthesis of hsp70. The fact that BSO-treatment attenuated the thermotolerance response but did not produce a decrease in hsp70 RNA or the synthesis of hsp70 suggests that hsp70 alone is not sufficient to confer thermotolerance upon cultured rat embryos.  相似文献   

14.
The resistance of stationary phase Salmonella typhimurium to heating at 55°C was greater in cells grown in nutritionally rich than in minimal media, but in all media tested resistance was enhanced by exposing cells to a primary heat shock at 48°C. Chloramphenicol reduced the acquisition of thermotolerance in all media but did not completely prevent it in any.
The onset of thermotolerance was accompanied by increased synthesis of major heat shock proteins of molecular weight about 83, 72, 64 and 25 kDa. When cells were shifted from 48°C to 37°C, however, thermotolerance was rapidly lost with no corresponding decrease in the levels of these proteins. There is thus no direct relationship between thermotolerance and the cellular content of the major heat shock proteins. One minor protein of molecular weight about 34 kDa disappeared rapidly following a temperature down-shift. Its presence in the cell was thus correlated with the thermotolerant state.  相似文献   

15.
Apoptosis is a form of cell death that can function to eliminate cells damaged by environmental stress. One stress that can compromise embryonic development is elevated temperature (i.e., heat shock). For the current studies, we hypothesized that heat shock induces apoptosis in bovine embryos in a developmentally regulated manner. Studies were performed to 1) determine whether heat shock can induce apoptosis in preimplantation embryos, 2) test whether heat-induced apoptosis is developmentally regulated, 3) evaluate whether heat shock-induced changes in caspase activity parallel patterns of apoptosis, and 4) ascertain whether exposure to a mild heat shock can protect embryos from heat-induced apoptosis. As determined by TUNEL reaction, exposure of bovine embryos > or =16 cells on Day 5 after insemination to 41 or 42 degrees C for 9 h increased the percentage of cells undergoing apoptosis. In addition, there was a duration-dependent increase in the proportion of blastomeres that were apoptotic when embryos were exposed to temperatures of 40 or 41 degrees C, which are more characteristic of temperatures experienced by heat-stressed cows. Heat shock also increased caspase activity in Day 5 embryos. However, heat shock did not induce apoptosis in 2- or 4-cell embryos, nor did it increase caspase activity in 2-cell embryos. The apoptotic response of 8- to 16-cell-stage bovine embryos to heat shock depended upon the day after insemination that heat shock occurred. When 8- to 16-cell embryos were collected on Day 3 after insemination, heat shock of 41 degrees C for 9 h did not induce apoptosis. In contrast, when 8- to 16-cell embryos were collected on Day 4 after insemination and exposed to heat shock, there was an increase in the percentage of cells undergoing apoptosis. Exposure of 8- to 16-cell embryos at Day 4 to a mild heat shock of 40 degrees C for 80 min blocked the apoptotic response to a subsequent, more-severe heat shock of 41 degrees C for 9 h. In conclusion, apoptosis is a developmentally acquired phenomenon that occurs in embryos exposed to elevated temperature, and it can be prevented by induced thermotolerance.  相似文献   

16.
17.
Exposure of postimplantation rat embryos on days 9, 10, 11, and 12 of gestation to an in vitro heat shock of 43 degrees C for 30 min results in the induction of heat shock proteins (HSPs) in day 9 and 10 embryos, a severely attenuated response in day 11 embryos, and no detectable response in day 12 embryos. The heat shock response in day 9 embryos (presomite stage) is characterized by the synthesis of HSPs with molecular weights of 28-78 kDa. In heat shocked day 10 embryos, two additional HSPs are induced (34 and 82 kDa). In addition, two HSPs present on day 9 are absent on day 10. In day 11 heat shocked embryos, only three HSPs (31, 39, and 69 kDa) are induced, while in day 12 embryos no detectable HSPs are induced. Northern blot analysis of HSP 70 RNA levels indicates that the accumulation of this RNA, but not actin RNA, varies depending on developmental stage at the time of exposure to heat as well as the duration of the heat shock. Day 9 embryos exhibit the most pronounced accumulation of HSP 70 RNA while embryos on days 10-12 exhibit an increasingly attenuated accumulation of HSP 70 RNA, particularly after the more acute exposures (43 degrees C for 30 or 60 min). Thus, the ability to synthesize HSP 70 and to accumulate HSP 70 RNA changes dramatically as rat embryos develop from day 9 to day 12 (presomite to 31-35 somite stages).  相似文献   

18.
Summary Very short heat shocks are administered to carefully staged early embryos of Drosophila melanogaster, and the effects on protein synthesis pattern investigated. A shock as short as 2 min will induce the heat shock response (reduction of normal protein synthesis, increased synthesis of the heat shock proteins) in syncytial blastoderm or later stages. Thus the initial events of the heat shock response must occur within 2 min, and not reverse upon rapid return to 22° C. A low level of synthesis of the 70 kDa heat shock protein is sometimes visible in unshocked animals, but may be induced by the labeling procedure. Survival following a short shock is not strictly correlated with a high level of heat shock response. Pre-blastoderm embryos do not produce significant heat shock protein, but survive a 2 min 43°C heat shock better than do heat shock response competent blastoderm embryos. The protein synthesis pattern prior to the blastoderm stage is very stable, possibly enhancing survival following a short shock. Shocks of 3 min or longer are more detrimental to pre-blastoderm embryos than to later stages, confirming the role of the heat shock response in survival following a longer shock. Stage-specific developmental defects (phenocopies) may be induced by heat shock at the blastoderm or later stages. Induction of these defects may require disruption of the normal protein synthesis pattern. Use of very short heat shocks to induce the heat shock response will be valuable in identifying the precise time at which a specific defect can be induced.  相似文献   

19.
Thermophilic organisms from each of the three phylogenetic domains (Bacteria, Archaea, and Eucarya) acquired thermotolerance after heat shock. Bacillus caldolyticus grown at 60 degrees C and heat shocked at 69 degrees C for 10 min showed thermotolerance at 74 degrees C, Sulfolobus shibatae grown at 70 degrees C and heat shocked at 88 degrees C for 60 min showed thermotolerance at 95 degrees C, and Thermomyces lanuginosus grown at 50 degrees C and heat shocked at 55 degrees C for 60 min showed thermotolerance at 58 degrees C. Determinations of protein synthesis during heat shock revealed differences in the dominant heat shock proteins for each species. For B. caldolyticus, a 70-kDa protein dominated while for S. shibatae, a 55-kDa protein dominated and for T. lanuginosus, 31- to 33-kDa proteins dominated. Reagents that disrupted normal protein synthesis during heat shock prevented the enhanced thermotolerance.  相似文献   

20.
Development of the Paraguayan anuran Lepidobatrachus laevis is unusual in that the larvae are obligate carnivores, facultative cannibals and apparently exist at high environmental temperatures in their natural habitat. In the present study, the effect of environmental temperature on the rate of anuran development was investigated. The larvae have a thermotolerance range of 18°C for normal development between 19 and 37°C. The effect of temperature on the rate of development was dramatic; larvae that were incubated at 36.8°C develop to stage 24 (Gosner) in approximately 9 h compared with 24 h for larvae incubated at 19°C. The ability of larvae to survive heat shock was also examined; larvae did not survive a shock of 45°C for 15 min when it was administered at stages 3, 5, 9, 10 or 20. However, using the same heat shock conditions, 50% survival was observed when larvae were shocked at stage 16. To study protein synthesis during heat shock, larvae were pulsed with [35S]-methionine during heat shock and labeled proteins were analyzed by electrophoresis under reducing and denaturing conditions. Larvae synthesized two sets of heat-shock proteins at doublet molecular weights of 83/78 and 62/59 kDa. These proteins were synthesized independently of the stage of development at which the shock was administered or the magnitude of the heat shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号