首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J Boyes  A Bird 《Cell》1991,64(6):1123-1134
  相似文献   

2.
DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines through an interplay of hydrogen bonding and cation-π interaction. Through molecular dynamics and quantum-chemistry calculations we investigate the methyl-cytosine recognition process and demonstrate that methylation enhances MBD-mDNA binding by increasing the hydrophobic interfacial area and by strengthening the interaction between mDNA and MBD proteins. Free-energy perturbation calculations also show that methylation yields favorable contribution to the binding free energy for MBD-mDNA complex.  相似文献   

3.
DNA methylation occurs in bacteria, fungi, plants and animals, however its role varies widely among different organisms. Even within animal genomes, methylation patterns vary substantially from undetectable in nematodes, to global methylation in vertebrate genomes. The number and variety of proteins containing methyl-CpG binding domains (MBDs) that are encoded in animal genomes also varies, with a general correlation between the extent of genomic methylation and the number of MBD proteins. We describe here the evolution of the MBD proteins and argue that the vertebrate MBD complement evolved to exploit the benefits and protect against the dangers of a globally methylated genome.  相似文献   

4.
Effects of DNA binding proteins on DNA methylation in vitro   总被引:1,自引:0,他引:1  
The inheritance of DNA methylation patterns may play an important role in the stability of the differentiated state. We have therefore studied the inhibitory effects of DNA binding proteins on DNA methylation in vitro. Mouse L1210 cells grown in the presence of 5-azacytidine acquire hemimethylated sites in their DNA. Purified hemimethylated DNA accepted methyl groups from S-adenosyl-L-methionine in the presence of a crude maintenance methylase more readily than purified DNA isolated from cells not exposed to 5-azacytidine. On the other hand, chromatin fractions isolated from cells grown in the presence or absence of 5-azacytidine were poor substrates for the maintenance methylase irrespective of the number of hemimethylated sites present in the DNA. Inhibition of DNA methylation was shown to be associated primarily with chromatin proteins bound to DNA, and trypsinization of nuclei increased their methyl accepting abilities. Methyl acceptance was increased by salt extraction of chromosomal proteins. These data suggest that association of histones with DNA may play a role in the modulation of methylation patterns.  相似文献   

5.
6.
7.
Structural requirements for DNA binding of GCM proteins.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

8.
DNA methylation is a major epigenetic modification in mammalian cells, and patterns involving methylation of cytosine bases, known as CpG methylation, have been implicated in the development of many types of cancer. Methyl binding domains (MBDs) excised from larger mammalian methyl-CpG-binding proteins specifically recognize methyl-cytosine bases of CpG dinucleotides in duplex DNA. Previous molecular diagnostic studies involving MBDs have employed Escherichia coli for protein expression with either low soluble yields or the use of time-consuming denaturation-renaturation purification procedures to improve yields. Efficient MBD-based diagnostics require expression and purification methods that maximize protein yield and minimize time and resource expenditure. This study is a systematic optimization analysis of MBD expression using both SDS-PAGE and microscopy and it provides a comparison of protein yield from published procedures to that from the conditions found to be optimal in these experiments. Protein binding activity and specificity were verified using a DNA electrophoretic mobility shift assay, and final protein yield was improved from the starting conditions by a factor of 65 with a simple, single-step purification.  相似文献   

9.
10.
11.
12.
13.
Methyl-CpG binding domain (MBD) proteins in Arabidopsis thaliana bind in vitro methylated CpG sites. Here, we aimed to characterize the binding properties of AtMBDs to chromatin in Arabidopsis nuclei. By expressing in wild-type cells AtMBDs fused to green fluorescent protein (GFP), we showed that AtMBD7 was evenly distributed at all chromocenters, whereas AtMBD5 and 6 showed preference for two perinucleolar chromocenters adjacent to nucleolar organizing regions. AtMBD2, previously shown to be incapable of binding in vitro-methylated CpG, was dispersed within the nucleus, excluding chromocenters and the nucleolus. Recruitment of AtMBD5, 6, and 7 to chromocenters was disrupted in ddm1 and met1 mutant cells, where a significant reduction in cytosine methylation occurs. In these mutant cells, however, AtMBD2 accumulated at chromocenters. No effect on localization was observed in the chromomethylase3 mutant showing reduced CpNpG methylation or in kyp-2 displaying a reduction in Lys 9 histone H3 methylation. Transient expression of DDM1 fused to GFP showed that DDM1 shares common sites with AtMBD proteins. Glutathione S-transferase pull-down assays demonstrated that AtMBDs bind DDM1; the MBD motif was sufficient for this interaction. Our results suggest that the subnuclear localization of AtMBD is not solely dependent on CpG methylation; DDM1 may facilitate localization of AtMBDs at specific nuclear domains.  相似文献   

14.
15.
16.
CpG methylation determines a variety of biological functions of DNA. The methylation signal is interpreted by proteins containing a methyl-CpG binding domain (MBDs). Based on the NMR structure of MBD1 complexed with methylated DNA we analysed the recognition mode by means of molecular dynamics simulations. As the protein is monomeric and recognizes a symmetrically methylated CpG step, the recognition mode is an asymmetric one. We find that the two methyl groups do not contribute equally to the binding energy. One methyl group is associated with the major part of the binding energy and the other one nearly does not contribute at all. The contribution of the two cytosine methyl groups to binding energy is calculated to be -3.6 kcal/mol. This implies a contribution of greater than two orders of magnitude to the binding constant. The conserved amino acid Asp32 is known to be essential for DNA binding by MBD1, but so far no direct contact with DNA has been observed. We detected a direct DNA base contact to Asp32. This could be the main reason for the importance of this amino acid. MBD contacts DNA exclusively in the major groove, the minor groove is reserved for histone contacts. We found a deformation of the minor groove shape due to complexation by MBD1, which indicates an information transfer between the major and the minor groove.  相似文献   

17.
Summary Heterogeneous nuclear RNP protein A1, one of the major proteins in hnRNP particle (precursor for mRNA), is known to be post-translationally arginine-methylatedin vivo on residues 193, 205, 217 and 224 within the RGG box, the motif postulated to be an RNA binding domain. Possible effect of NG-arginine methyl-modification in the interaction of protein A1 to nucleic acid was investigated. The recombinant hnRNP protein A1 wasin vitro methylated by the purified nuclear protein/histone-specific protein methylase I (S-adenosylmethionine:protein-arginine N-methyltransferase) stoichiometrically and the relative binding affinity of the methylated and the unmethylated protein A1 to nucleic acid was compared: Differences in their binding properties to ssDNA-cellulose, pI values and trypsin sensitivities in the presence and absence of MS2-RNA all indicate that the binding property of hnRNP protein A1 to single-stranded nucleic acid has been significantly reduced subsequent to the methylation. These results suggest that posttranslational methyl group insertion to the arginine residue reduces protein-RNA interaction, perhaps due to interference of H-bonding between guanidino nitrogen arginine and phosphate RNA.Abbreviations hnRNP heterogeneous ribonucleoprotein particle - AdoMet S-adenosyl-L-methionine - AdoHcy S-adenosyl-L-homocysteine - MBP myelin basic protein - HMG high mobility group - ss single stranded  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号