首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characteristics of succinate transport were determined in basolateral and brush-border membrane vesicles (BLMV and BBMV, respectively) isolated in parallel from rabbit renal cortex. The uptake of succinate was markedly stimulated by the imposition of an inwardly directed Na+ gradient, showing an "overshoot" phenomenon in both membrane preparations. The stimulation of succinate uptake by an inwardly directed Na+ gradient was not significantly affected by pH clamp or inhibition of Na(+)-H+ exchange. The Na(+)-dependent and -independent succinate uptakes were not stimulated by an outwardly directed pH gradient. The Na dependence of succinate uptake exhibited sigmoidal kinetics, with Hill coefficients of 2.17 and 2.38 in BLMV and BBMV, respectively. The Na(+)-dependent succinate uptake by BLMV and BBMV was stimulated by a valinomycin-induced inside-negative potential. The Na(+)-dependent succinate uptake by BLMV and BBMV followed a simple Michaelis-Menten kinetics, with an apparent Km of 22.20 +/- 4.08 and 71.52 +/- 0.14 microM and a Vmax of 39.0 +/- 3.72 and 70.20 +/- 0.96 nmol/(mg.min), respectively. The substrate specificity and the inhibitor sensitivity of the succinate transport system appeared to be very similar in both membranes. These results indicate that both the renal brush-border and basolateral membranes possess the Na(+)-dependent dicarboxylate transport system with very similar properties but with different substrate affinity and transport capacity.  相似文献   

2.
3.
The characteristics of tryptophan uptake in isolated human placental brush-border membrane vesicles were investigated. Tryptophan uptake in these vesicles was predominantly Na+-independent. Uptake of tryptophan as measured with short incubations occurred exclusively by a carrier-mediated process, but significant binding of this amino acid to the membrane vesicles was observed with longer incubations. The carrier-mediated system obeyed Michaelis-Menten kinetics, with an apparent affinity constant of 12.7 +/- 1.0 microM and a maximal velocity of 91 +/- 5 pmol/15 s per mg of protein. The kinetic constants were similar in the presence and absence of a Na+ gradient. Competition experiments showed that tryptophan uptake was effectively inhibited by many neutral amino acids except proline, hydroxyproline and 2-(methylamino)isobutyric acid. The inhibitory amino acids included aromatic amino acids as well as other system-1-specific amino acids (system 1 refers to the classical L system, according to the most recent nomenclature of amino acid transport systems). The transport system showed very low affinity for D-isomers, was not affected by phloretin or glucose but was inhibited by p-azidophenylalanine and N-ethylmaleimide. The uptake rates were only minimally affected by change in pH over the range 4.5-8.0. Tryptophan uptake markedly responded to trans-stimulation, and the amino acids capable of causing trans-stimulation included all amino acids with system-1-specificity. The patterns of inhibition of uptake of tryptophan and leucine by various amino acids were very similar. We conclude that system t, which is specific for aromatic amino acids, is absent from human placenta and that tryptophan transport in this tissue occurs via system 1, which has very broad specificity.  相似文献   

4.
The uptake of cephalosporin antibiotics, cephalexin, was studied with brush-border microvillous plasma membrane vesicles prepared and purified from human full-term placental syncytiotrophoblasts. The uptake of cephalexin by the membrane vesicles was not stimulated in the presence of an Na+ gradient from the outside to the inside of the vesicles, whereas alpha-(methylamino)isobutyrate uptake into the vesicles of the same preparation was stimulated by an Na+ gradient. The equilibrium level of cephalexin uptake decreased with increasing osmolarity of the medium, which indicates that cephalexin is transported into the membrane vesicles. When cephalexin concentrations were varied, the initial rate of uptake obeyed Michaelis-Menten kinetics with Km and Vmax values of 2.29 mM and 2.98 nmol/mg of protein per 60 s, respectively. The uptake of cephalexin was inhibited by structural analogues and sulfhydryl modifying reagents. These results indicate the existence of a carrier-mediated transport system for cephalexin in the human placental brush-border membranes.  相似文献   

5.
The effect of selenate on sulphate uptake by human placental brush-border membrane vesicles has been investigated. Selenate added to the incubation medium inhibits 1 mM sulphate uptake in a dose-dependent fashion with a Ki of approx. 2.5 mM. The inhibition by selenate is competitive, suggesting that selenate and sulphate share a common transporter (an anion exchange system) which may be of particular importance for the transport of such essential trace elements to the fetus.  相似文献   

6.
1. A high-density-lipoprotein (HDL) conversion factor was partially purified from human plasma by precipitation with (NH4)2SO4, ultracentrifugation, cation-exchange chromatography, anion-exchange chromatography and chromatography on a column of hydroxyapatite. 2. This factor modulates the particle size of HDL by converting a homogeneous population into new populations of particles, some of which are smaller and others larger than those in the original population. 3. The isolated HDL conversion factor appeared as one major band and at least three minor bands on SDS/polyacrylamide-gel electrophoresis; attempts to purify this factor further resulted in loss of conversion activity. 4. Preparations of the HDL conversion factor were stable after heating to 58 degrees C for 1 h, and were shown not to possess proteolytic activity. 5. The conversion factor was distinct from the known apolipoproteins, none of which had HDL conversion activity. 6. Addition of apolipoprotein A-IV had a dose-dependent potentiating effect on the process promoted by the HDL conversion factor.  相似文献   

7.
These studies are aimed at characterizing the transport of the tripeptide, glycylglycyl-L-proline (GlyGlyPro) across human jejunal brush-border membrane vesicles. GlyGlyPro (0.65 mM) was hydrolyzed by brush-border membrane vesicles with the extent of hydrolysis per mg protein being 23% at 0.5 min, 57% at 1 min and complete hydrolysis at 60 min. Treatment of the membrane vesicles with gel-complexed papain (to remove membrane peptidases) resulted in minimal hydrolysis of GlyGlyPro up to 10 min of incubation. Measurement of GlyGlyPro influx with papain-treated vesicles in the presence of increasing medium osmolarity showed that uptake occurred into an osmotically reactive intravesicular space. Transport of GlyGlyPro with normal and papain-treated membrane vesicles was similar in the presence of an inward Na+ or K+ gradient. No overshoot phenomenon was observed in the presence of an inward proton gradient (extravesicular pH 5.5; intravesicular pH 7.5). An interior negative membrane potential induced by a K+ diffusion potential in the presence of valinomycin stimulated the uptake of the peptide. The effect of increasing concentrations on initial rates of GlyGlyPro uptake revealed the presence of a saturable component as well as a diffusional component. Preloading the membrane vesicles with 20 mM glycylsarcosylsarcosine stimulated uptake by 4-fold. Uptake of GlyGlyPro was inhibited greater than 50% by dipeptides and tripeptides and less than 15% by free amino acids. These results indicate that GlyGlyPro uptake in jejunal brush-border membrane vesicles is not energized by a Na+ or proton gradient and that transport occurs by carrier-mediated and diffusional processes.  相似文献   

8.
Uptake of taurine in human placental brush-border membrane vesicles was greatly stimulated in the presence of an inwardly-directed Na+ + Cl- -gradient and uphill transport of taurine could be demonstrated under these conditions. Na+ as well as Cl- were obligatory for this uptake and both ion gradients could energize the uphill transport. This Na+ + Cl- -gradient-dependent taurine uptake was stimulated by an inside-negative membrane potential, demonstrating the electrogenicity of the process. The uptake system was highly specific for beta-amino acids and the Km of the system for taurine was 6.5 +/- 0.4 microM.  相似文献   

9.
Summary The nucleoside transport activity of human placental syncytiotrophoblast brush-border and basal membrane vesicles was compared. Adenosine and uridine were taken up into an osmotically active space. Adenosine was rapidly metabolized to inosine, metabolism was blocked by preincubating vesicles with 2-deoxycoformycin, and subsequent adenosine uptake studies were performed in the presence of 2-deoxycoformycin. Adenosine influx by brush-border membrane vesicles was fitted to a two-component system consisting of a saturable system with apparent Michaelis-Menten kinetics (apparentK m approx. 150 m) and a linear component. Adenosine uptake by the saturable system was blocked by nitrobenzylthioinosine (NBMPR), dilazep, dipyridamole and other nucleosides. Inhibition by NBMPR was associated with high-affinity binding of NBMPR to the brush-border membrane vesicles (apparentK d 0.98±0.21nm). Binding of NBMPR to these sites was blocked by adenosine, inosine, uridine, thymidine, dilazep and dipyridamole, and the respective apparentK i values were 0.23±0.012, 0.36±0.035, 0.78±0.1, 0.70±0.12 (mm), and 0.12 and 4.2±1.4 (nm). In contrast, adenosine influx by basal membrane vesicles was low (less than 10% of the rate observed with brush-border membrane vesicles under similar conditions), and hence no quantitative studies of adenosine uptake could be performed with these vesicles. Nevertheless, high-affinity NBMPR binding sites were demonstrated in basal membrane vesicles with similar properties to those in brushborder membrane vesicles (apparentK d 1.05±0.13nM and apparentK i values for adenosine, inosine, uridine, thymidine, dilazep and dipyridamole of 0.14±0.045, 0.54±0.046, 1.26±0.20, 1.09±0.18mm and 0.14 and 3.7±0.5nm, respectively). Exposure of both membrane vesicles to UV light in the presence of [3H]NBMPR resulted in covalent labeling of a membrane protein(s) with a broad apparentM r on SDS gel electropherograms of 77,000–45,000, similar to that previously reported for many other tissues, including human erythrocytes. We conclude that the maternal (brush-border) and fetal (basal) surface of the human placental syncytiotrophoblast posses broad-specificity, facilitated-diffusion, NBMPR-sensitive nucleoside transporters.  相似文献   

10.
The characteristics of lactate transport in brush-border membrane vesicles isolated from normal human full-term placentas were investigated. Lactate transport in these vesicles was Na+-independent, but was greatly stimulated when the extravesicular pH was made acidic. In the presence of an inwardly directed H+ gradient ([H+]o greater than [H+]i), transient uphill transport of lactate could be demonstrated. This H+ gradient-dependent stimulation was not a result of a H+ diffusion potential. Transport of lactate in the presence of the H+ gradient was not inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid or by furosemide, ruling out the participation of an anion exchanger in placental lactate transport. Many monocarboxylates strongly interacted with the lactate transport system, whereas, with the single exception of succinate, dicarboxylates did not. The monocarboxylates pyruvate and lactate, but not the dicarboxylate succinate, when present inside the vesicles, were able to exert a trans-stimulatory effect on the uptake of radiolabeled lactate. Kinetic analyses provided evidence for a single transport system with a Kt of 4.1 +/- 0.4 mM for lactate and a Vmax of 54.2 +/- 9.9 nmol/mg of protein/30 s. Pyruvate inhibited lactate transport competitively, by reducing the affinity of the system for lactate without altering the maximal velocity. It is concluded that human placental brush-border membranes possess a transport system specific for lactate and other monocarboxylates and that this transport system is Na+-independent and is energized by an inwardly directed H+ gradient. Lactate-H+ symport rather than lactate-OH- antiport appears to be the mechanism of the H+ gradient-dependent lactate transport in these membranes.  相似文献   

11.
Biotin transport in rat intestinal brush-border membrane vesicles   总被引:1,自引:0,他引:1  
Transport of biotin across rat intestinal brush-border membrane was examined using the brush-border membrane vesicle (BBMV) technique. Uptake of biotin by BBMV is the result of transport of the substrate into the intravesicular space with negligible binding to membrane surfaces. In the presence of a Na+ gradient (out greater than in), transport of biotin was higher with a transient 'overshoot' phenomenon. In comparison, transport of biotin in the presence of a choline gradient (out greater than in) was lower with no 'overshoot' phenomenon. In both jejunal and ileal BBMV, the transport of biotin as a function of concentration was saturable in the presence of a Na+ gradient (out greater than in) but was linear in the presence of a choline gradient (out greater than in). Vmax of the Na+-dependent transport system was 0.88 and 0.37 pmol/mg protein per s and apparent Kt was 7.57 and 7.85 microM in jejunal and ileal BBMV, respectively. Structural analogues inhibited the transport process of biotin. Unlike the electrogenic transport of D-glucose, the transport of the anionic biotin was not affected by imposing a relatively positive intravesicular potential with the use of valinomycin and an inwardly-directed K+ gradient, suggesting that biotin transport is most probably an electroneutral process. This suggestion was further supported by studies on biotin transport in the presence of anions of different lipid permeability. The results of this study demonstrate that biotin transport across rat intestinal brush-border membrane is by a carrier-mediated, Na+-dependent and electroneutral process. Furthermore, transport of biotin is higher in the jejunum than the ileum.  相似文献   

12.
D-Glucose transport was investigated in isolated brush-border membrane vesicles from human small intestine. Characteristics of D-glucose transport from the jejunum were compared with that in the mid and terminal ileum. Jejunal and mid-ileal D-glucose transport was Na+-dependent and electrogenic. The transient overshoot of jejunal D-glucose transport was significantly greater than corresponding values in mid-ileum. The terminal ileum did not exhibit Na+-dependent D-glucose transport, but did exhibit Na+-dependent taurocholate transport. Na+-glucose co-transport activity as measured by tracer-exchange experiments was greatest in the jejunum, and diminished aborally. We conclude that D-glucose transport in man is Na+-dependent and electrogenic in the proximal intestine and directly related to the activity of D-glucose-Na+ transporters present in the brush-border membranes. D-Glucose transport in the terminal ileum resembles colonic transport of D-glucose.  相似文献   

13.
We had previously proposed that organic cations are transported across the brush-border membrane in the canine kidney by a H+ exchange (or antiport) system (Holohan, P.D. and Ross, C.R. (1981) J. Pharmacol. Exp. Ther. 216, 294–298). In the present report, we demonstrate that in brush-border membrane vesicles the transport of organic cations is chemically coupled to the countertransport of protons, by showing that the uphill or concentrative transport of a prototypic organic cation, N1-methylnicotinamide (NMN), is chemically coupled to the flow of protons down their chemical gradient. In a reciprocal manner, the concentrative transport of protons is coupled to the counterflow of organic cations down their concentration gradient. The transport of organic cations is monitored by measuring [3H]NMN while the transport of protons is monitored by measuring changes in acridine orange absorbance. The functional significance of the coupling is that a proton gradient lowers the Km and increases the Vmax for NMN transport.  相似文献   

14.
15.
We had previously proposed that organic cations are transported across the brush-border membrane in the canine kidney by a H+ exchange (or antiport) system (Holohan, P.D. and Ross, C.R. (1981) J. Pharmacol. Exp. Ther. 216, 294-298). In the present report, we demonstrate that in brush-border membrane vesicles the transport of organic cations is chemically coupled to the countertransport of protons, by showing that the uphill or concentrative transport of a prototypic organic cation, N1-methylnicotinamide (NMN), is chemically coupled to the flow of protons down their chemical gradient. In a reciprocal manner, the concentrative transport of protons is coupled to the counterflow of organic cations down their concentration gradient. The transport of organic cations is monitored by measuring [3H]NMN while the transport of protons is monitored by measuring changes in acridine orange absorbance. The functional significance of the coupling is that a proton gradient lowers the Km and increases the Vmax for NMN transport.  相似文献   

16.
Transport of glycylglycine into rabbit renal brush-border membrane vesicles was found to be Na+-independent, H+ gradient-dependent and electrogenic. Marked overshoot uptake of the dipeptide was observed when an inward-directed proton gradient and inside-negative potential difference were imposed simultaneously across the vesicular membranes. Saturable depolarization of vesicular membranes could be demonstrated with glycylglycine by use of a fluorescent cyanine dye, di-S-C3(5). The results indicate that glycylglycine is contransported with H+ across the membranes.  相似文献   

17.
In papain-treated rat renal brush-border membrane vesicles, cystine uptake was enhanced under sodium gradient conditions. This effect was not observed when sodium was equilibrated across the vesicle membrane or when sodium was completely absent from the incubation medium. The increased rate of cystine uptake occurred within the first two minutes of incubation and coincided with the period of increased flux of sodium known to occur after papain treatment. Under sodium gradient conditions, the Vmax of cystine uptake by treated vesicles was 65% greater while the Km was 25% lower than the value observed in untreated membranes. The increased cystine uptake after papain treatment occurred when medium cystine was in the electroneutral form. In the absence of a sodium gradient, cystine uptake by control membranes was insensitive to changes in membrane potential and this was unaltered after papain treatment. Exposure of the membranes to papain also resulted in a profound decrease in cystine binding which occurs in native membranes incubated with cystine. The fact that cystine uptake is unchanged under sodium equilibration and even enhanced under sodium gradient conditions suggests that the component of cystine binding is not essential for cystine transport and may represent non-specific binding to membrane proteins.  相似文献   

18.
Taurine, a sulfated beta-amino acid, is conditionally essential during development. A maternal supply of taurine is necessary for normal fetal growth and neurologic development, suggesting the importance of efficient placental transfer. Uptake by the brush-border membrane (BBM) in several other tissues has been shown to be via a selective Na(+)-dependent carrier mechanism which also has a specific anion requirement. Using BBM vesicles purified from the human placenta, we have confirmed the presence of Na(+)-dependent, carrier-mediated taurine transport with an apparent Km of 4.00 +/- 0.22 microM and a Vmax of 11.72-0.36 pmol mg-1 protein 20 s-1. Anion dependence was examined under voltage-clamped conditions, in order to minimize the contribution of membrane potential to transport. Uptake was significantly reduced when anions such as thiocyanate, gluconate, or nitrate were substituted for Cl-. In addition, a Cl(-)-gradient alone (under Na(+)-equilibrated conditions) could energize uphill transport as evidenced by accelerated uptake (3.13 +/- 0.8 pmol mg-1 protein 20 s-1) and an overshoot compared to Na+, Cl- equilibrated conditions (0.60 +/- 0.06 pmol mg-1 protein 20 s-1). A Cl(-)-gradient (Na(+)-equilibrated) also stimulated uptake of [3H]taurine against its concentration gradient. Analysis of uptake in the presence of varying concentrations of external Cl- suggested that 1 Cl- ion is involved in Na+/taurine cotransport. We conclude that Na(+)-dependent taurine uptake in the placental BBM has a selective anion requirement for optimum transport. This process is electrogenic and involves a stoichiometry of 2:1:1 for Na+/Cl-/taurine symport.  相似文献   

19.
The modulation of serotonin uptake kinetics by Na+, Cl-, H+, and K+ was investigated in brush-border membrane vesicles prepared from normal human term placentas. The presence of Na+ and Cl- in the external medium was mandatory for the function of the serotonin transporter. In both cases, the initial uptake rate of serotonin was a hyperbolic function of the ion concentration, indicating involvement of one Na+ and one Cl- per transport of one serotonin molecule. The apparent dissociation constant for Na+ and Cl- was 145 and 79 mM, respectively. The external Na+ increased the Vmax of the transporter and also increased the affinity of the transporter for serotonin. The external Cl- also showed similar effects on the Vmax and the Kt, but its effect on the Kt was small compared to that of Na+. The presence of an inside-acidic pH, with or without a transmembrane pH gradient, stimulated the NaCl-dependent serotonin uptake. The effect of internal [H+] on the transport function was to increase the Vmax and decrease the affinity of the transporter for serotonin. The presence of K+ inside the vesicles also greatly stimulated the initial rates of serotonin uptake, and the stimulation was greater at pH 7.5 than at pH 6.5. This stimulation was a hyperbolic function of the internal K+ concentration at both pH values, indicating involvement of one K+ per transport of one serotonin molecule. The apparent dissociation constant for K+ was 5.6 mM at pH 6.5 and 4.0 mM at pH 7.5. The effects of internal [K+] on the uptake kinetics were similar to those of internal [H+].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Glucocorticoid uptake by isolated placental membrane vesicles has been studied in an attempt to identify a membrane-mediated carrier mechanism. A preliminary communication from this laboratory has reported that uptake of the glucocorticoid corticosterone by these vesicles was a time-dependent, saturable, osmotically sensitive process (Fant, M.E., Harbison, R.D. and Harrison, R.W. (1979) J. Biol. Chem. 254, 6218-6221), but did not conclusively demonstrate a carrier mechanism. Further studies of labeled corticosterone uptake by placental vesicles are described herein which indicate that steroid uptake by these vesicles is a carrier-mediated process. We found that corticosterone uptake was temperature-sensitive, and an apparent phase-transition effect on the rate of uptake was seen to occur at approximately 16 degrees C. Treatment of the vesicles with phospholipase A2 and the sulfhydryl group attacker, p-chloromercuriphenylsulfonate, inhibited corticosterone uptake. In contrast to our previous findings in intact cells, neuraminidase treatment of membranes did not inhibit steroid uptake, perhaps indicating a species variation. Lastly, it was possible to show that corticosterone movement across the membrane exhibited countertransport, a phenomenon common only to carrier-mediated transport mechanisms. These studies show that placental vesicles accumulate corticosterone by a carrier-mediated mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号