首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine whether or not the erythrophore originates from xanthophores in the dorsal skin of the brown frog, Rana ornativentris, we morphologically examined the differentiation and migration of the two chromatophore types and their pigmentary organelle formation. At an early tadpole stage, three kinds of chromatophores, xanthophores, iridophores, and melanophores, appeared in the subdermis, whereas the erythrophore did so just before the foreleg protrusion stage. By the middle of metamorphosis, most chromatophores other than erythrophores had migrated to the subepidermal space. Erythrophores, which appeared late in the subdermis, proliferated actively there during metamorphosis and finished moving into the subepidermal space by the completion of metamorphosis. Carotenoid vesicles and pterinosomes within the erythrophores and xanthophores showed several significant differences in structure. In xanthophores, carotenoid vesicles were abundant throughout life, whereas those in erythrophores decreased in number with the growth of the frogs. The fibrous materials contained in the pterinosomes were initially scattered but soon formed a concentric lamellar structure. In erythrophores, the lamellar structure began to form at the periphery of the organelles but at the center in xanthophores. In addition, the pterinosomes of erythrophores were uniform in size throughout development, while those of xanthophores showed a tendency to become smaller after metamorphosis. The pterinosomes of xanthophores were significantly larger than those of erythrophores. These findings suggest that an erythrophore is not a transformed xanthophore, although they resemble each other closely in many respects.  相似文献   

2.
Using Ham's F-12 medium, an in vitro culture system permitting cellular survival for over 6 months has been developed for the chromatophores of the guppy. In this culture system, the various types of chromatophores (melanophores, erythrophores and xanthophores) migrated out of the explanted tail fin tissue, retained their pigmentation, and displayed both mitotic and pigment-translocating activities. The mitotic activity was evident during the first 3 or 4 weeks in culture, whereas the pigment-translocating ability persisted for 16 weeks. The cultured chromatophores of male fish displayed pigment aggregation in response to adrenergic agents (epinephrine and norepinephrine) and pigment dispersion in response to alpha-melanocyte stimulating hormone (alpha-MSH), cyclic AMP and dibutyryl cyclic AMP. Cyclic GMP did not elicit pigment-translocating responses in any of the chromatophores.  相似文献   

3.
Homeotherms are generally considered to lack classical active dermal pigment cells (chromatophores) in their integument, attributable to the development of an outer covering coat of hair or feathers. However, bright colored dermal pigment cells, comparable to chromatophores of lower vertebrates, are found in the irides of many birds. We propose that, because of its exposed location, the iris is an area in which color from pigment cells has sustained a selective advantage and appears to have evolved independently of the general integument. In birds, the iris appears to have retained the potential for the complete expression of all dermal chromatophore types. Differences in cell morphology and the presence of unusual pigments in birds are suggested to be the result of evolutionary changes that followed the divergence of birds from reptiles. By comparison, mammals appear to have lost the potential for producing iridophores, xanthophores, or erythrophores comparable to those of lower vertebrates, even though some species possess brightly colored irides. It is proposed that at least one species of mammal (the domestic cat) has recruited a novel iridial reflecting pigment organelle originally developed in the choroidal tapetum lucidum. The potential presence of classical chromatophores in mammals remains open, as few species with bright irides have been examined.  相似文献   

4.
Homeotherms are generally considered to lack classical active dermal pigment cells (chromatophores) in their integument, attributable to the development of an outer covering coat of hair or feathers. However, bright colored dermal pigment cells, comparable to chromatophores of lower vertebrates, are found in the irides of many birds. We propose that, because of its exposed location, the iris is an area in which color from pigment cells has sustained a selective advantage and appears to have evolved independently of the general integument. In birds, the iris appears to have retained the potential for the complete expression of all dermal chromatophore types. Differences in cell morphology and the presence of unusual pigments in birds are suggested to be the result of evolutionary changes that followed the divergence of birds from reptiles. By comparison, mammals appear to have lost the potential for producing iridophores, xanthophores, or erythrophores comparable to those of lower vertebrates, even though some species possess brightly colored irides. It is proposed that at least one species of mammal (the domestic cat) has recruited a novel iridial reflecting pigment organelle originally developed in the choroidal tapetum lucidum. The potential presence of classical chromatophores in mammals remains open, as few species with bright irides have been examined.  相似文献   

5.
Ichthyologists, natural‐history artists, and tropical‐fish aquarists have described, illustrated, or photographed colour patterns in adult marine fishes for centuries, but colour patterns in marine fish larvae have largely been neglected. Yet the pelagic larval stages of many marine fishes exhibit subtle to striking, ephemeral patterns of chromatophores that warrant investigation into their potential taxonomic and phylogenetic significance. Colour patterns in larvae of over 200 species of marine teleosts, primarily from the western Caribbean, were examined from digital colour photographs, and their potential utility in elucidating evolutionary relationships at various taxonomic levels was assessed. Larvae of relatively few basal marine teleosts exhibit erythrophores, xanthophores, or iridophores (i.e. nonmelanistic chromatophores), but one or more of those types of chromatophores are visible in larvae of many basal marine neoteleosts and nearly all marine percomorphs. Whether or not the presence of nonmelanistic chromatophores in pelagic marine larvae diagnoses any major teleost taxonomic group cannot be determined based on the preliminary survey conducted, but there is a trend toward increased colour from elopomorphs to percomorphs. Within percomorphs, patterns of nonmelanistic chromatophores may help resolve or contribute evidence to existing hypotheses of relationships at multiple levels of classification. Mugilid and some beloniform larvae share a unique ontogenetic transformation of colour pattern that lends support to the hypothesis of a close relationship between them. Larvae of some tetraodontiforms and lophiiforms are strikingly similar in having the trunk enclosed in an inflated sac covered with xanthophores, a character that may help resolve the relationships of these enigmatic taxa. Colour patterns in percomorph larvae also appear to diagnose certain groups at the interfamilial, familial, intergeneric, and generic levels. Slight differences in generic colour patterns, including whether the pattern comprises xanthophores or erythrophores, often distinguish species. The homology, ontogeny, and possible functional significance of colour patterns in larvae are discussed. Considerably more investigation of larval colour patterns in marine teleosts is needed to assess fully their value in phylogenetic reconstruction. © 2013 The Authors. Zoological Journal of the Linnean Society published by John Wiley & Sons Ltd on behalf of The Linnean Society of London  相似文献   

6.
SYNOPSIS. The bright colored pigment cells of fishes and amphibiansinclude xanthophores, erythrophores, and iridophores. Theirultrastructure and pigmentary composition are discussed. Therole of the hypophysis in controlling both physiological andmorphological changes of color in both groups is discussed.The nervous system may be involved in physiological responsesof fish iridophores. The physiology of the amphibian iridophoreis discussed from the point of view of its parallelism of responseto that of the melanophore. Intermedin causes iridophores tocontract as do several drugs; the effect of intermedin can bereversed by still other agents. Melatonin has no effect on iridophores.Xanthophores of some fishes and amphibians are induced to expandby intermedin. The morphological effects of intermedin at theorganellar level are presented in terms of ultrastructure andpigmentary composition. The integrated response of amphibiandermal chromatophores to intermedin is described as a basicmechanism for change in color.  相似文献   

7.
Guppy is a popular ornamental fish owing to its diverse body and fin coloration. More than 40 established color varieties have been selectively bred. The complementary DNAs for 2 enzymes that are involved in the de novo synthesis of pteridines and purines, which are important for the production of color pigments, were cloned from the caudal fin. Two cDNA isoforms for 6-pyruvoyl tetrahydropterin synthase (PTPS), with an open reading frame of 130 and 147 amino acids, respectively, were cloned from the Red Tail variety. The deduced amino acid sequence of the longer isoform shows an overall identity of about 65% to the mammalian PTPS sequences. The cDNA for xanthine dehydrogenase (XDH) was cloned from the Yellow Tail variety, and consists of an open reading frame of 1331 amino acids. Although it shows a higher overall identity to bovine aldehyde oxidase (AO; 54%) than to chicken XDH (51%), it has a NAD-binding domain that is specific to XDHs. Northern blot analysis indicated that both PTPS and XDH messenger RNAs were highly expressed in the liver, but absent in the muscle. In the caudal fins, guppy varieties with a higher proportion of xanthophores and erythrophores showed higher expression of PTPS, while XDH mRNA levels were too low to indicate obvious differential expression among the color guppy varieties. The results implied that high expression of PTPS is correlated with the biosynthesis of pteridines in the erythrophores and xanthophores, while the association between the putative guppy XDH with specific chromatophores is less clear.  相似文献   

8.
This paper reviews evidence for the presence of pteridines in iridophores, leucophores, and xanthophores in a wide variety of vertebrate chromatophores, and argues that the chemical and functional distinction between pterinosomes and reflecting platelets is not as clear-cut as previously believed. Observations indicate that: (1) Pteridines may, either alone or in conjunction with purines, form pigment granules that reflect light, (2) these pigment granules are highly variable ranging from fibrous pterinosomes to typical reflecting platelets and may be colored, reflect white light, or be iridescent, and (3) many “leucophores” probably contain typical pterinosomes and presumed associated colorless pteridines and are therefore more closely related to erythrophores and xanthophores than to iridophores with which they are usually classified. We propose that the classification of pigment cells should be modified to reflect these facts.  相似文献   

9.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

10.
The regulation of motile activity in fish chromatophores   总被引:10,自引:0,他引:10  
Chromatophores, including melanophores, xanthophores, erythrophores, leucophores and iridophores, are responsible for the revelation of integumentary coloration in fish. Recently, blue chromatophores, also called cyanophores, were added to the list of chromatophores. Many of them are also known to possess cellular motility, by which fish are able to change their integumentary hues and patterns, thus enabling them to execute remarkable or subtle chromatic adaptation to environmental hues and patterns, and to cope with various ethological encounters. Such physiological color changes are indeed crucial for them to survive, either by protecting themselves from predators or by increasing their chances of feeding. Sometimes, they are also useful in courtship and mutual communications among individuals of the same species, leading to an increased rate of species survival. Such strategies are realized by complex mechanisms existing in the endocrine and/or nervous systems. Current studies further indicate that some paracrine factors such as endothelins (ETs) are involved in these processes. In this review, the elaborate mechanisms regulating chromatophores in these lovely aquatic animals are described.  相似文献   

11.
This is a biographical sketch of my research and its related personal episodes with respect to brightly colored pigmentation in lower vertebrates. It includes a brief story of the studies on; (a) pterinosomes as a specific site of pteridine deposition in xanthophores or erythrophores of fish and amphibians, (b) a mosaic phenotype of chromatophores occurring in the reptiles and its implication for their developmental origin and differentiation mechanisms, (c) erythrophoroma as a tumor of erythrophores in goldfish, (d) the pluripotentials of erythrophoroma cells for expression of neural crest-derived characters in vitro, (e) pigment disorders occurring in hatchery-raised flounders and (f) recognition of pigment cell types by murine tyrosinase genes transfected into an orange-colored variant of medaka fish. Some of the personal affairs associated with the history of the Japanese community for pigment cell research were described to illustrate the background of these studies.  相似文献   

12.
Dermal specialized pigment cells (chromatophores) are thought to be one type of extraretinal photoreceptors responsible for a wide variety of sensory tasks, including adjusting body coloration. Unlike the well-studied image-forming function in retinal photoreceptors, direct evidence characterizing the mechanism of chromatophore photoresponses is less understood, particularly at the molecular and cellular levels. In the present study, cone opsin expression was detected in tilapia caudal fin where photosensitive chromatophores exist. Single-cell RT-PCR revealed co-existence of different cone opsins within melanophores and erythrophores. By stimulating cells with six wavelengths ranging from 380 to 580 nm, we found melanophores and erythrophores showed distinct photoresponses. After exposed to light, regardless of wavelength presentation, melanophores dispersed and maintained cell shape in an expansion stage by shuttling pigment granules. Conversely, erythrophores aggregated or dispersed pigment granules when exposed to short- or middle/long-wavelength light, respectively. These results suggest that diverse molecular mechanisms and light-detecting strategies may be employed by different types of tilapia chromatophores, which are instrumental in pigment pattern formation.  相似文献   

13.
Wild-collected adults of Bombina orientalis are bright green dorsally and red to red-orange ventrally. As a prelude to an analysis of the differentiation of pigment cells in developing B. orientalis, we describe structural and chemical aspects of the fully differentiated pigment pattern of the “normal” adult. Structurally, differences between dorsal green and ventral red skin are summarized as follows: (1) Dorsal green skin contains a “typical” dermal chromatophore unit comprised of melanophores, iridophores, and xanthophores. Red skin contains predominantly carotenoid-containing xanthophores (erythrophores), and skin from black spot areas contains only melanophores. (2) In ventral red skin, there is also a thin layer of deep-lying iridophores that presumably are not involved in the observed color pattern. (3) Xanthophores of red and green skin are morphologically distinguishable from each other. Dorsal skin xanthophores contain both pterinosomes and carotenoid vesicles; ventral skin xanthophores contain only carotenoid vesicles. Carotenoid vesicles in dorsal xanthophores are much larger but less electron dense than comparable structures in ventral xanthophores. The presence of carotenes in ventral skin accounts for the bright red-orange color of the belly of this frog. Similar pigments are also present in green skin, but in smaller quantities and in conjunction with both colored (yellow) and colorless pteridines. From spectral data obtained for xanthophore pigments and structural data obtained from the size and arrangement of reflecting platelets in the iridophore layer, we attempt to explain the phenomenon of observed green color in B. orientalis.  相似文献   

14.
Albinism with a large variation in body color was found in a hatchery population of Japanese flounder. In addition to albinism, ambicoloration and pseudo-albinism were simultaneously observed in some individuals. Albinos had a remarkably lower number of melanophores on the scales of ocular side than wild-type individuals did, although no significant difference was observed in the numbers of xanthophores and iridophores. The intensity of body color significantly correlated with the number of melanophores among the albinos. No significant differences were observed in the intensity of body color and the number of melanophores between the ocular side and the ambicoloration area. Pseudo-albinism was accompanied by the reductions of melanophores and xanthophores, indicating the different expression patterns of chromatophores between albinism and pseudo-albinism. The combined effects of albinism and pseudo-albinism caused the disappearances of melanophores and xanthophores in the pseudo-albinism area of albinos. In addition to chromatophores, the different characteristics of several phenotypic traits were observed between albinos and wild-type individuals. Growth-related traits of the albinos were inferior to those of the wild-type individuals. Furthermore, the albinos had a larger pseudo-albinism area and a higher vertebral deformed rate than the wild-type individuals did. Individual multilocus heterozygosity and inbreeding coefficient measured by microsatellite loci did not show any indication that the albinos had higher inbreeding coefficient than the wild-type individuals did. This study demonstrated the expression patterns of chromatophores in the body color abnormalities of a flatfish species and the potential pleiotropic effects of an albinism gene on some phenotypic traits.  相似文献   

15.
We have studied the pigmentary system of the teleost Sparus aurata skin by electron microscopy and chromatographic analysis. Under electron microscopy, we found the dermis to contain the three major types of recognized chromatophores: melanophores, xanthophores and iridophores. Melanophores were more abundant in the dorsal region, whereas the iridophores were more abundant in the ventral region. The most important discovery was that of epidermal xanthophores. Epidermal xanthophores were the only chromatophores in the epidermis, something only found in S aurata and in a teleost species living in the Antartic sea. In contrast, the biochemical analysis did not establish any special characteristics: we found pteridine and flavin pigments located mostly in the pigmented dorsal region. Riboflavin and pterin were two of the most abundant coloured pigment types, but other colourless pigments such as xanthopterin and isoxanthopterin were also detected.  相似文献   

16.
In 1925, Wilson listed, in his classic third edition of Cell in Development and Heredity, four theories for the morphological and physiological characteristics of cytoplasm; each theory provided some sort of explanation as to the mechanism(s) of organelle translocations. During the past twenty years, cell biologists have focused their attentions on the cell's cytoskeleton, microtrabecular lattice, and associated mechanochemical motors which drive organelles along cytoskeletal tracks. A number of cell types have been used to study organelle translocations, but chromatophores, pigment cells, from cold-blooded vertebrates have been one of the more popular models. This article reviews some of the research findings during the past twenty years, particularly those involving cytoplasmic elements: i.e, microfilaments, intermediate filaments, microtubules, and mechanochemical motors. In addition, it contrasts the proposed involvement of these elements in organelle translocations with the endoplasmic reticulum, a tubulovesicular organelle, which we recently demonstrated is responsible, through its elongation or retraction, for the translocations of carotenoid droplets in goldfish xanthophores and swordtail fish erythrophores. Here, the carotenoid droplets are not free in the cytoplasm and do not translocate via cytoskeletal tracks, but instead are attached to or are a part of the endoplasmic reticulum. On the other hand, carotenoid droplets of squirrel fish erythrophores are free in the cytoplasm and appear to translocate via microtubules. Finally, the rates of pigmentary organelle translocations are reviewed in light of the participation of the cytoskeletal elements with the endoplasmic reticulum.  相似文献   

17.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

18.
In the tadpole of the tree frog Hyla arborea, the color of the dorsal skin was dark brown. Dermal melanophores, xanthophores, and iridophores were scattered randomly under the subepidermal collagen layer (SCL). After metamorphosis, the dorsal color of the animal changed to green and the animal acquired the ability of dramatic color change, demonstrating that the dermal chromatophore unit (DCU) was formed at metamorphosis. Fibroblasts invaded the SCL and divided it into two parts: the stratum spongiosum (SS) and the stratum compactum (SC). The activity of collagenase increased at metamorphosis. The fibroblasts appeared to dissolve the collagen matrix as they invaded the SCL. Then, three types of chromatophores migrated through the SCL and the DCU was formed in the SS. The mechanism how the three types of chromatophores were organized into a DCU is uncertain, but different migration rates of the three chromatophore types may be a factor that determines the position of the chromatophores in the DCU. Almost an equal number of each chromatophore type is necessary to form the DCUs. However, the number of dermal melanophores in the tadpoles was less than the number of xanthophores and iridophores. It was suggested that epidermal melanophores migrated to the dermis at metamorphosis and developed into dermal melanophores. This change may account for smaller number of dermal melanophores available to form the DCUs.  相似文献   

19.
Abstract The ultrastructure of erythrophores and melanophores present in the skin of adult Tilapia mossambica is described. A comparison of the two types of chromatophores indicates that both show a smooth endoplasmic reticulum, pinocytotic vesicles, microtubules and complexly branching cell processes. However, differences in the form, consistency and distribution of erythrosomes and melanosomes are noted. It is suggested that erythrophores be defined as chromatophores including carotenoid derivatives as the main pigment in their erythrosomes.  相似文献   

20.
Cells from the eye cornea of Hexagrammos octagrammus which are responsible for changes of the cornea colour from bright orange to colourless, depending on the light conditions, are described. It was shown that the change in cornea colour was due to a shift of red pigment from the cell body into its processes (in the light) and in the opposite direction at the dark adaptation of animals. The ultrastructural constitution of these cells has a number of characteristics. The whole cell cytoplasm is filled up with fine lipid droplets wherein carotenoid pigments giving red colour to these cells are presumably dissolved; the cytoplasmic membrane forms numerous deep and branched folds into the cell and has a lot of pinocytose visicles; the cell body and especially the process display many microtubes arranged regularly. The described cells differ greatly in their form, size and ultrastructural constitution from the known types of pigment cells (melanophores, xanthophores and erythrophores). This makes it possible to consider them as chromatophores of an independent type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号