首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triiodothyronine (T3) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T3/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T3 at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T3-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T3 response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T3 responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T3/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.  相似文献   

2.
3.
4.
The gel retardation assay was used to analyze the role of the thyroid hormone receptor alpha (TR alpha) ligand-binding domain (LBD) in controlling receptor interaction with a thyroid hormone responsive element (TRE). While wild type receptor TR alpha binds to the TRE mainly as monomer, deletion of 85 amino acids from its C-terminus results in a mutant receptor with enhanced DNA binding that forms several slow mobility complexes as revealed by gel retardation assay. Receptor deletion mutants that lack most of the LBD show significantly elevated DNA binding and are still able to bind to DNA as two complexes. Thus, the C-terminal end of TR alpha appears to interfere with the dimerization/oligomerization function and DNA binding of TR alpha. All C-terminal deletion mutants have lost their T3-responsive activator function, but some show constitutive activity. Nuclear factor from several cell lines, including CV-1, F9, and GC cells, interacts with TR alpha receptor to form a larger molecular weight complex as determined by gel retardation assay. This factor could not be detected in HeLatk- cells, where TR alpha does not activate a TRE-containing reporter gene. The nuclear factor is heat sensitive and does not bind to TRE itself but can interact with TR alpha in the absence of DNA. Deletion analysis demonstrates that the leucine zipper-like sequence located in the LBD of TR alpha is involved in this interaction. Together, our data suggest that TR alpha contains a dimerization function outside the LBD which is inhibited by the carboxy-terminal region, while the leucine zipper-like sequence in the LBD is required for interaction with a nuclear factor.  相似文献   

5.
6.
7.
8.
9.
为了鉴定牙鲆甲状腺激素受体TRs介导甲状腺激素调控的靶基因, 研究采用RT-PCR克隆了TRαA基因的CDS区, 并构建了p3×Flag-TRαA重组真核表达载体;该重组质粒转染HEK293T细胞后, RT-PCR、实时定量PCR与Western blot检测均表明牙鲆TRαA在哺乳动物蛋白表达系统中成功转录并翻译;且重组质粒转染的细胞裂解液通过G1亲和层析柱纯化、过滤除菌可得到纯的融合蛋白3×Flag-TRαA, 然后双荧光素酶报告实验通过在HEK293T细胞中共转染p3×Flag-TRαA和含候选靶启动子的报告基因表达载体pGL3-Pro-atoh8-1517/1333/708, 表明TRαA受体结合在atoh8基因启动子区–1497— –688特异的2个TRE识别序列来调控该基因的转录, 即atoh8是TRαA介导甲状腺激素直接调控的靶基因。研究为深入探究甲状腺激素受体TRαA介导甲状腺激素调控的信号通路提供了基础依据。  相似文献   

10.
11.
12.
13.
We have examined the binding of nuclear proteins and recombinant thyroid hormone receptors (TRs) to the palindromic thyroid hormone responsive element AGGTCATGACCT (TREp) using a gel electrophoretic mobility shift assay. Four specific protein-DNA complexes were detected after incubation of nuclear extracts (NE) from T3-responsive pituitary (GH3) cells with a TREp-containing DNA fragment. This was compared with the TREp binding of reticulocyte lysate-synthesized TRs. TR alpha 1 and TR beta 2 each formed a single major TR:TREp complex which comigrated with the least retarded complex formed by GH3 NE, while TR beta 1 formed multiple complexes suggesting that it can bind to TREp as an oligomer. Interestingly, coincubation of 35S-TR alpha 1, GH3 NE, and unlabeled TREp resulted in not only the 35S-TR:TREp complex, but in two additional more greatly retarded complexes containing 35S-TR alpha 1 and comigrating with those formed by GH3 extract alone. Incubation of each of the TRs with NE from COS-7 cells, which do not possess sufficient endogenous TRs to mediate T3-responses, resulted in formation of a new, more greatly shifted complex. A similar, heat labile activity which altered mobility of the TR:TRE complex was also present in NE from T3-unresponsive JEG-3 cells. At high concentration of NE, all of the TR bound to TREp was more greatly retarded than in the absence of NE. Truncation of TR alpha 1 at amino acid 210 prevented additional complex formation in the presence of NE without affecting DNA binding, suggesting that the carboxyl-terminus of the TRs is essential for interaction with nuclear proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Mutations in the thyroid hormone receptor beta gene (TRbeta) cause resistance to thyroid hormone (RTH). Genetic analyses indicate that phenotypic manifestation of RTH is due to the dominant negative action of mutant TRbeta. However, the molecular mechanisms underlying the dominant negative action of mutants and how the same mutation results in marked variability of resistance in different tissues in vivo are not clear. Here we used a knock-in mouse (TRbetaPV mouse) that faithfully reproduces human RTH to address these questions. We demonstrated directly that TRbeta1 protein was approximately 3-fold higher than TRalpha1 in the liver of TRbeta(+/+) mice but was not detectable in the heart of wild-type and TRbetaPV mice. The abundance of PV in the liver of TRbeta(PV/PV) was more than TRbeta(PV/+) mice but not detectable in the heart. TRalpha1 in the liver was approximately 6-fold higher than that in the heart of wild-type and TRbetaPV mice. Using TR isoforms and PV-specific antibodies in gel shift assays, we found that in vivo, PV competed not only with TR isoforms for binding to thyroid hormone response elements (TRE) but also competed with TR for the retinoid X receptors in binding to TRE. These competitions led to the inhibition of the thyroid hormone (T(3))-positive regulated genes in the liver. In the heart, however, PV was significantly lower and thus could not effectively compete with TRalpha1 for binding to TRE, resulting in activation of the T(3)-target genes by higher levels of circulating thyroid hormones. These results indicate that in vivo, differential expression of TR isoforms in tissues dictates the dominant negative activity of mutant beta receptor, thereby resulting in variable phenotypic expression in RTH.  相似文献   

16.
Thyroid hormone receptor (TR) α and β mediate thyroid hormone action at target tissues. TR isoforms have specific roles in development and in adult tissues. The mechanisms underlying TR isoform-specific action, however, are not well understood. We demonstrate that posttranslational modification of TR by conjugation of small SUMO to TRα and TRβ plays an important role in triiodothyronine (T3) action and TR isoform specificity. TRα was sumoylated at lysines 283 and 389, and TRβ at lysines 50, 146, and 443. Sumoylation of TRβ was ligand-dependent, and sumoylation of TRα was ligand-independent. TRα-SUMO conjugation utilized the E3 ligase PIASxβ and TRβ-SUMO conjugation utilized predominantly PIAS1. SUMO1 and SUMO3 conjugation to TR was important for T3-dependent gene regulation, as demonstrated in transient transfection assay and studies of endogenous gene regulation. The functional role of SUMO1 and SUMO3 in T3 induction in transient expression assays was closely matched to the pattern of TR and cofactor recruitment to thyroid hormone response elements (TREs) as determined by ChIP assays. SUMO1 was required for the T3-induced recruitment of the co-activator CREB-binding protein (CBP) and release of nuclear receptor co-repressor (NCoR) on a TRE but had no significant effect on TR DNA binding. SUMO1 was required for T3-mediated recruitment of NCoR and release of CBP from the TSHβ-negative TRE. SUMO3 was required for T3-stimulated TR binding to the TSHβ-negative TRE and recruitment of NCoR. These findings demonstrate that conjugation of SUMO to TR has a TR-isoform preference and is important for T3-dependent gene induction and repression.  相似文献   

17.
18.
We have previously demonstrated that binding of in vitro synthesized thyroid hormone receptor (TR) to thyroid hormone response elements (TREs) is enhanced by the addition of nuclear extracts from several different cell types, suggesting that binding of TR is partially dependent on a T3 receptor auxiliary protein (TRAP). We have used the avidin-biotin complex DNA-binding assay to discriminate between regions of TREs that bind TR alone and sites that are influenced by interactions with TRAP. Mutations in the TREs from rat GH and glycoprotein hormone alpha-subunit genes show that a specific DNA sequence is required for TRAP-mediated enhancement of TR binding. Mutations in the B half-site of the rat GH TRE or in similar sequences [(T/A)GGGA] in the alpha-subunit TRE ablate the enhancement of TR binding by TRAP. Furthermore, binding of TR to a natural half-site in the TSH beta-subunit gene (bases -16 to 6), which lacks an additional AGGGA-like sequence, is not enhanced by the addition of TRAP. Binding of TR to TREs was also tested at physiological salt concentrations in the avidin-biotin complex DNA-binding assay. Binding of human TR beta to TREs decreases dramatically at 140 mM KCl compared to binding at 50 mM KCl; however, the addition of TRAP enhances the binding to almost 4-fold of basal binding, suggesting that TRAP may be important for stabilization of TR binding to TREs in the cell.  相似文献   

19.
Thyroid hormone (T3) stimulates various metabolic pathways and the hepatic actions of T3 are mediated primarily through the thyroid hormone receptor beta (TRβ). Hypothyroidism has been linked with low grade inflammation, elevated risk of hepatic steatosis and atherosclerosis. Secretory phospholipases (sPLA2) are associated with inflammation, hyperlipidemia and atherosclerosis. Due to potential linkage between thyroid hormone and sPLA2, we investigated the effect of thyroid hormone status on the regulation of secretory phospholipases in mice, rats and human liver. T3 suppressed the expression of the sPLA2 group IIa (PLA2g2a) gene in the liver of BALB/c mice and C57BL/6 transgenic mice expressing the human PLA2g2a. PLA2g2a was elevated with hypothyroidism and high fat diets which may contribute to the low grade inflammation associated with hypothyroidism and diet induced obesity. We also examined the effects of the TRβ agonist eprotirome on hepatic gene regulation. We observed that eprotirome inhibited the expression of selected sPLA2 genes and furthermore the cytokine mediated induction PLA2g2a was suppressed. In addition, eprotirome induced genes involved in fatty acid oxidation and cholesterol clearance while inhibiting lipogenic genes. Our results indicate that in vivo thyroid hormone status regulates the abundance of sPLA2 and the inhibition of PLA2g2a by T3 is conserved across species. By regulating sPLA2 genes, T3 may impact processes associated with atherosclerosis and inflammation and TRβ agonists may ameliorate inflammation and hyperlipidemia.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号