首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reddy M 《BioTechniques》2004,37(6):948-952
A number of selection systems have been developed for direct selection of recombinant plasmids in cloning experiments (positive selection). In this study, the Commonly used LacZ-based alpha-complementation plasmid vectors have been used for designing a positive selection system for the selection of recombinants. The basis for the Strategy is the phenomenon of galactose sensitivity exhibited by galactose epimerase (galE) mutants of Escherichia coli. It is known that lacZ+ galE, but not lacZ- galE cells are killed upon addition of lactose due to the accumulation of a toxic intermediate, UDP-galactose, by hydrolysis of lactose. Using a galE mutant strain of E. coli that carries the lacZAM15 allele, various alpha-complementation plasmids that vary in their copy number were examined for their ability to be killed following addition of lactose. The results show that some plasmids that exhibit relatively high beta-galactosidase enzyme activity can be used effectively for positive selection. This selection would be extremely useful during primary cloning experiments such as construction of genomic or cDNA libraries and also in instances involving selection for rare recombinants.  相似文献   

2.
3.
Escherichia-Pseudomonas shuttle vectors derived from pUC18/19   总被引:37,自引:0,他引:37  
H P Schweizer 《Gene》1991,97(1):109-121
Two new broad-host-range plasmid vectors, pUCP18 and pUCP19, which are stably maintained in Escherichia coli and Pseudomonas aeruginosa have been constructed. The plasmids are based on the E. coli pUC18 and pUC19 vectors and possess all their features: (i) convenient direct screening of recombinants; (ii) versatile multiple cloning site; (iii) use as sequencing and expression vectors; (iv) small size; and (v) intermediate to high copy number.  相似文献   

4.
Galindo I  Lorenzo MM  Blasco R 《BioTechniques》2001,30(3):524-6, 528-9
Vaccinia virus expression vectors are widely used to direct the expression of proteins in eukaryotic cells. Here, we describe a new set of plasmid vectors designed for the expression of histidine-tagged proteins in the vaccinia system. To facilitate the rapid isolation of virus recombinants, the plasmids contain a viral gene (F13L) that serves as an efficient selection marker based on virus plaque phenotype. Histidine codons and restriction sites derived from pET-16b bacterial expression plasmid were included, thus facilitating the transfer of genes between E. coli and vaccinia expression plasmids. Plasmids in which the gene is placed downstream of either a strong vaccinia virus or a T7 promoter were constructed, allowing for constitutive or conditional expression, respectively, of the foreign protein.  相似文献   

5.
C Yanisch-Perron  J Vieira  J Messing 《Gene》1985,33(1):103-119
Three kinds of improvements have been introduced into the M13-based cloning systems. (1) New Escherichia coli host strains have been constructed for the E. coli bacteriophage M13 and the high-copy-number pUC-plasmid cloning vectors. Mutations introduced into these strains improve cloning of unmodified DNA and of repetitive sequences. A new suppressorless strain facilitates the cloning of selected recombinants. (2) The complete nucleotide sequences of the M13mp and pUC vectors have been compiled from a number of sources, including the sequencing of selected segments. The M13mp18 sequence is revised to include the G-to-T substitution in its gene II at position 6 125 bp (in M13) or 6967 bp in M13mp18. (3) M13 clones suitable for sequencing have been obtained by a new method of generating unidirectional progressive deletions from the polycloning site using exonucleases HI and VII.  相似文献   

6.
A new cloning strategy is described which utilizes direct selection of recombinants for shotgun sequencing in the filamentous bacteriophage M13. Direct selection is accomplished by insertional inactivation of the M13 gene X protein, a powerful inhibitor of phage-specific DNA synthesis when overproduced. An extra copy of gene X was inserted into the intergenic region of M13 and placed under the control of the bacteriophage T7 gene 10 promoter and RBS. Random fragments are cloned into the EcoRV cloning site of the new gene X cistron and recombinants are selected in an E. coli male strain producing T7 RNA polymerase. Cloning efficiencies obtained with M13-100 or phosphatase-treated M13mp19 vector are comparable. The direct selection capability of M13-100 was demonstrated to have the following advantages: (a) consistently achieved high ratios of recombinants to religated vector in the libraries, averaging about 500:1 (0.2% background), and (b) the elimination of the need for phosphatase treatment of the vector to reduce background. The direct selection strategy significantly improves the efficiency of shotgun library construction in M13, and should therefore facilitate the cloning aspects of large scale sequencing projects.  相似文献   

7.
Streptomyces griseus does not readily take up foreign DNA isolated from other Streptomyces species or Escherichia coli, presumably due to its unique restriction-modification systems that function as a barrier for interspecific DNA transfer. To efficiently transform S. griseus by avoiding the restriction barriers, we methylated incoming DNA in vivo and in vitro and treated protoplasts with heat prior to transformation. Whereas heat treatment of protoplasts or methylation of the E. coli-Streptomyces shuttle vectors (pXE4 and pKK1443) did not prominently improve the transformation efficiency, HpaII methylation of the vectors from any E. coli strains tested in this study highly increased the transformation efficiency. The highest transformation efficiency was observed when the shuttle vectors were isolated from the dam, hsd strain of E. coli (GM161) and methylated by AluI and HpaII methyltransferases, and the efficiency was approximately the same as that of the vectors from S. griseus. We identified several restriction-modification systems that decrease the transformation efficiency. This research also led us to understand methylation profiles and restriction-modification systems in S. griseus.  相似文献   

8.
A set of broad-host-range single-replicon shuttle vectors for cloning nucleotide sequences in gram-positive bacteria (lactobacilli, enterococci, lactococci, bacilli, etc.) was created. The vectors are based on the cryptic plasmid pLF 1311 fromLactobacillus fermentum VKM 1311, belonging to the family of the σ-type pE194-like plasmids. The vectors can replicate in gram-positive bacteria andEscherichia coli. They are stable in many gram-positive bacteria, have small sizes, and allow the selection of recombinants on media with X-Gal. The vectors that contain the region of initiation of the conjugal transfer of plasmid RP4 belonging to the incompatibility group IncPα can be mobilized in a great number of bacteria using a helper plasmid fromE. coli but not from gram-positive bacteria  相似文献   

9.
We have constructed and used an integrative vector, pAT112, that takes advantage of the transposition properties (integration and excision) of transposon Tn1545. This 4.9-kb plasmid is composed of: (i) the replication origin of pACYC184; (ii) the attachment site (att) of Tn1545; (iii) erythromycin-and kanamycin-resistance-encoding genes for selection in Gram- and Gram+ bacteria; and (iv) the transfer origin of IncP plasmid RK2, which allows mobilization of the vector from Escherichia coli to various Gram+ recipients. Integration of pAT112 requires the presence of the transposon-encoded integrase, Int-Tn, in the new host. This vector retains the insertion specificity of the parental element Tn1545 and utilises it to carry out insertional mutagenesis, as evaluated in Enterococcus faecalis. Since pAT112 contains the pACYC184 replicon and lacks most of the restriction sites that are commonly used for molecular cloning, a gene from a Gram+ bacterium disrupted with this vector can be recovered in E. coli by cleavage of genomic DNA, intramolecular ligation and transformation. Regeneration of the gene, by excision of pAT112, can be obtained in an E. coli strain expressing the excisionase and integrase of Tn1545. The functionality of this system was illustrated by characterization of an IS30-like structure in the chromosome of En. faecalis. Derivatives pAT113 and pAT114 contain ten unique cloning sites that allow screening of recombinants having DNA inserts by alpha-complementation in E. coli carrying the delta M15 deletion of lacZ alpha. These vectors are useful to clone and introduce foreign genes into the genomes of Gram+ bacteria.  相似文献   

10.
We have developed pBR328-derived vectors which allow highly efficient positive selection of recombinant plasmids. The system is based on the rglB-coded restriction activity of Escherichia coli K-12 directed against 5-methylcytosine (5mC)-containing DNA. The vectors code for cytosine-specific, temperature-sensitive DNA methyltransferases (ts-Mtases), whose specificity elicits RglB restriction. 5mC-free vector DNA - a prerequisite to allow establishment of such plasmids in cells expressing the RglB nuclease activity - can be prepared from cultures grown at 42 degrees C. At 30 degrees C the vector plasmids are vulnerable to RglB restriction due to the expression of suicidal Mtase activity. Cloning a DNA fragment into the ts-Mtase-coding gene disrupts the lethal methylation and thus permits selection of such recombinant plasmids at 30 degrees C. The standard vector used, pBN73, contains unique recognition sites for nine restriction enzymes within the ts-Mtase-coding gene, which can be used independently or in combination for the construction of recombinant plasmids selectable by the rglB-coded activity. Plasmid pBN74, which carries the determinants for both the ts-Mtase and the RglB nuclease, contains seven unique sites within the ts-Mtase-coding gene. While selection of recombinant plasmids derived from pBN73 obligatorily requires the employment of rglB+ strains, selection of pBN74 derivatives can be performed independent of the E. coli-host genotype. It remains to be elucidated whether positive selection of pBN74-derived recombinant plasmids can also be achieved in hosts other than E. coli. Plasmids pBN73, pBN74 and the recombinants are structurally stable. Generally applicable procedures, as developed during the establishment of this vector system, are described; they allow the isolation of ts-Mtases and facilitate the cloning of genes coding for nucleases directed against 5mC-containing DNA.  相似文献   

11.
12.
Selective retention of recombinant plasmids coding for human insulin   总被引:3,自引:0,他引:3  
Plasmids may be lost from Escherichia coli K-12 hosts that are cultured without selection for plasmid retention. This is particularly true for chimeric plasmids that incorporate genes for human insulin into vectors derived from pBR322. The cIts857 gene of bacteriophage lambda was inserted into the bla gene of the human-insulin-coding plasmids, pIA7 delta 4 delta 1, pIB7 delta 4 delta 1 and pHI7 delta 4 delta 1, generating the new plasmids pPR17, pPR18 and pPR19, respectively, which produced the thermosensitive lambda repressor. The cI gene was downstream from the pM and pbla promoters, so that it may have been expressed from either or both promoters. Separate E. coli K-12 RV308 host strains containing the new recombinants were lysogenized with the repressor-defective bacteriophage lambda cI90. Loss of the plasmid from the lysogens causes concomitant loss of the lambda repressor and cell death, because the prophage is induced to enter the lytic growth cycle. The system effectively forces retention of the plasmid in all viable cells in the culture.  相似文献   

13.
Two new diphasmid vectors (lambda SK17 and SK22) and a novel procedure to construct linking libraries are described. A partial filling-in reaction provides counter-selection against false linking clones in the library, and obviates the need for supF selection. The diphasmid vectors, in combination with the novel selection procedure, have been used to construct a chromosome 3 specific NotI linking library from a human chromosome 3/mouse microcell hybrid cell line. The application of the new vectors and the strong biochemical and biological selections resulted in a library of 60,000 NotI linking clones. As practically all of them are real NotI linking clones (no false recombinants) the library represents approximately 3,000 human recombinants (equal to 10-15 genomic equivalents of chromosome 3). Previously published methods for construction of linking libraries are compared with the procedure described in the present paper. The advantages of the new vectors and the novel protocol are discussed.  相似文献   

14.
To produce human monoclonal antibodies in bacteria, a gene repertoire of IgM variable regions was isolated from human peripheral B lymphocytes by the polymerase chain reaction. Alternatively, synthetic antibody genes with random hypervariable regions are being generated that may provide libraries of even higher complexity. For the selection of specific monoclonal antibodies from these libraries, we have developed two E. coli vector systems that facilitate the surface display of an antibody physically linked to its own gene. The phagemid pSEX encodes a fusion protein of an antigen binding domain (Fv-antibody) with the docking protein (pIII) of filamentous phages. Specific antibody genes can therefore be enriched by antigen affinity chromatography. The plasmid pAP1 encodes a fusion protein of an Fv-antibody with a bacterial cell-wall protein. Bacteria carrying this plasmid express functional Fv-antibodies tightly bound to their surface. This should enable the selection of single cells with a fluorescence-assisted cell sorter (FACS) using labeled antigen or by adsorption to immobilized antigen. These vectors permit three major principles of the antibody response to be mimicked in E. coli: 1. Generation of a highly complex antibody repertoire; 2. Clonal selection procedures for library screening; and 3. The possibility of increasing a given affinity by repeated rounds of mutation and selection.  相似文献   

15.
A 3.6-kb endogenous plasmid was isolated from a Propionibacterium freudenreichii strain and sequenced completely. Based on homologies with plasmids from other bacteria, notably a plasmid from Mycobacterium, a region harboring putative replicative functions was defined. Outside this region two restriction enzyme recognition sites were used for insertion of an Escherichia coli-specific replicon and an erythromycin resistance gene for selection in Propionibacterium. Hybrid vectors obtained in this way replicated in both E. coli and P. freudenreichii. Whereas electroporation of P. freudenreichii with vector DNA isolated from an E. coli transformant yielded 10 to 30 colonies per microg of DNA, use of vector DNA reisolated from a Propionibacterium transformant dramatically increased the efficiency of transformation (> or =10(8) colonies per microg of DNA). It could be shown that restriction-modification was responsible for this effect. The high efficiency of the system described here permitted successful transformation of Propionibacterium with DNA ligation mixtures.  相似文献   

16.
An efficient method for moving mutations in cloned Escherichia coli DNA from plasmid vectors to the bacterial chromosome was developed. Cells carrying plasmids that had been mutated by the insertion of a resistance gene were infected with lambda phage containing homologous cloned DNA, and resulting lysates were used for transduction. Chromosomal transductants (recombinants) were distinguished from plasmid transductants by their ampicillin-sensitive phenotype, or plasmid transductants were avoided by using a recBC sbcB E. coli strain as recipient. Chromosomal transductants were usually haploid when obtained in a nonlysogen because of selection against the lambda vector and partially diploid when obtained in a lysogen. Pure stocks of phage that carry the resistance marker and transduce it at high frequency were obtained from transductant bacteria. The lambda-based method for moving mutant alleles into the bacterial chromosome described here should be useful for diverse analyses of gene function and genome structure.  相似文献   

17.
A minimal replicon of 1.8 kb isolated from a 10-kb plasmid of Pseudomonas savastanoi, pPS10, has been used to obtain a collection of small vectors specific for Pseudomonas (P. savastanoi, P. aeruginosa and P.putida). In addition, shuttle vectors that can be established both in Pseudomonas and Escherichia coli have been constructed by adding a pMB9 replicon. The vectors permit cloning of DNA fragments generated by a variety of restriction enzymes using different antibiotic resistance markers for selection and offer the possibility to screen recombinants by insertional inactivation. This cloning system can be used to establish recombinant plasmids in Pseudomonas either at low or high copy number. pPS10 derivatives are compatible with other Pseudomonas vectors derived from broad-host-range replicons of the incompatibility groups P1, P4/Q and W. Introduction and expression of the iaaMH operon in a P. savastanoi mutant deficient in the production of indoleacetic acid has been achieved using one of these vectors.  相似文献   

18.
This paper presents a versatile and efficient procedure for the construction of oligodeoxyribonucleotide directed site-specific mutations in DNA fragments cloned into M13 derived vectors. As an example, production of a transition mutation in a clone of the yeast MATa1 gene is described. The oligonucleotide is hybridized to the template DNA and covalently closed closed double stranded molecules are generated by extension of the oligonucleotide primer with E. coli DNA polymerase (large fragment) and ligation with T4 DNA ligase. The resulting double stranded closed circular DNA (CC-DNA) is separated from unligated and incompletely extended molecules by alkaline sucrose gradient centrifugation. This purification is essential for production of mutants at high efficiency. Competent E. coli JM101 cells are transformed with the CC-DNA fraction and single stranded DNA is isolated from individual plaques. The recombinants are screened for mutant molecules by 1) restriction endonuclease screening for the loss of the Hinf I site in the target region, and 2) by dot blot hybridization using the mutagenic oligonucleotide as probe. Double stranded DNA is isolated from the sequencing. Efficiency of mutant production is in the range of 10-45% and no precautions to prevent mismatch repair are required.  相似文献   

19.
Takamatsu D  Osaki M  Sekizaki T 《Plasmid》2001,45(2):101-113
pSSU1, a native plasmid of Streptococcus suis DAT1, was used to construct pSET-series shuttle vectors. In addition to the replication function of pSSU1, these vectors contain the multiple cloning sites and lacZ' gene from pUC19, which means that X-gal screening can be used to select recombinants in Escherichia coli. pSET1, pSET2, and pSET3 carry cat, spc, and both of these genes, respectively, as selectable markers. These vectors could be introduced into S. suis, E. coli, Salmonella typhimurium, S. pneumoniae, and S. equi ssp. equi by electrotransformation. The recA gene was cloned from S. suis and sequenced, and this information was used in the construction of a recA mutant of S. suis. Transformation frequencies and/or plasmid stability of all pSET vectors tested were decreased in both S. suis and E. coli recA mutants compared with the parental strains. These results suggested that functional RecA protein improved the maintenance of pSET vectors in both S. suis and E. coli. Moreover, cloning of the functional S. suis recA gene into pSET2 and complementation analysis of the recA mutant were successful in S. suis but not in E. coli. These results showed that pSET vectors are useful tools for cloning and analyzing S. suis genes in S. suis strains directly.  相似文献   

20.
Streptomyces natalensis produces the antifungal polyene macrolide pimaricin. Genetic manipulation of its biosynthetic genes has been hampered by the lack of efficient gene transfer systems. We have developed a gene transfer system based on intergeneric conjugation from Escherichia coli. Using this approach, we managed to attain transformation efficiencies of 1 x 10(-4) exconjugants per recipient when using self-replicating vectors such as pHZ1358. The use of integrative vectors such as pSET152 or pSOK804 resulted in significantly lower efficiencies. Site-specific integration or the use of self-replicating plasmids did not affect pimaricin production or the essential functions of S. natalensis. Use of DNA methylation proficient E. coli donor strains resulted in no transformants, indicating the presence of methyl-specific restriction systems in S. natalensis. This methodology will enable easier manipulation of the genes responsible for pimaricin biosynthesis, and could prove valuable for the generation of new designer polyene macrolides with better antifungal activity and pharmacological properties. As an example of the validity of the method, we describe the introduction of Supercos-1-derived cosmid vectors into S. natalensis in order to promote gene replacements by double crossover recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号