首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most promising vaccine strategies for the induction of cytotoxic-T-lymphocyte responses have been heterologous prime/boost regimens employing a plasmid DNA prime and a live recombinant-vector boost. The priming immunogen in these regimens must elicit antigen-specific memory CD8+ T lymphocytes that will expand following the boosting immunization. Because plasmid DNA immunogens are expensive and their immunogenicity has proven disappointing in human clinical trials, we have been exploring novel priming immunogens that might be used in heterologous immunization regimens. Here we show that priming with a prototype recombinant Mycobacterium smegmatis strain expressing human immunodeficiency virus type 1 (HIV-1) gp120-elicited CD4+ T lymphocytes with a functional profile of helper cells as well as a CD8+ T-lymphocyte population. These CD8+ T lymphocytes rapidly differentiated to memory cells, defined on the basis of their cytokine profile and expression of CD62L and CD27. Moreover, these recombinant-mycobacterium-induced T lymphocytes rapidly expanded following boosting with a recombinant adenovirus expressing HIV-1 Env to gp120-specific CD8+ T lymphocytes. This work demonstrates a remarkable skewing of recombinant-mycobacterium-induced T lymphocytes to durable antigen-specific memory CD8+ T cells and suggests that such immunogens might be used as priming vectors in prime/boost vaccination regimens for the induction of cellular immune responses.  相似文献   

2.
Vaccine-elicited cytotoxic T lymphocytes (CTL) should be long-lived memory cells that can rapidly expand in number following re-exposure to antigen. The present studies were initiated to analyze the ability of plasmid interleukin-12 (IL-12) to augment CTL responses in mice when delivered during the peak phase of an immune response elicited by a plasmid human immunodeficiency virus type 1 gp120 DNA vaccine. Delivery of plasmid IL-12 on day 10 postimmunization resulted in a robust expansion of gp120-specific CD8+ T cells, as measured by tetramer, gamma interferon ELISPOT, and functional-killing assays. Interestingly, this delayed administration of plasmid IL-12 had no significant effect on antigen-specific CD4(+)-T-cell and antibody responses. Phenotypic analyses suggested that administration of plasmid IL-12 near the time of the peak CTL response activated and expanded antigen-specific effector cells, preventing their loss through apoptosis. However, this IL-12-augmented population of gp120-specific CD8+ T cells did not efficiently expand following gp120 boost immunization, suggesting that these effector cells would be of little utility in expanding to contain a viral infection. Analyses of the phenotypic profile and anatomic distribution of the plasmid IL-12-augmented CTL population indicated that these lymphocytes were primarily effector memory rather than central memory T cells. These observations suggest that CTL-based vaccines should elicit central memory rather than effector memory T cells and illustrate the importance of monitoring the phenotype and functionality of vaccine-induced, antigen-specific CTL.  相似文献   

3.
Human immunodeficiency virus type 1 (HIV-1) infection is associated with loss of function and numbers of CD4+ T-helper cells. In order to bypass the requirement for CD4+ cells in antibody responses, we have utilized heat-inactivated Brucella abortus as a carrier. In this study we coupled a 14-mer V3 loop peptide (V3), which is homologous to 9 of 11 amino acids from the V3 loop of HIV-1 MN, and gp120 from HIV-1 SF2 to B. abortus [gp120(SF2)-B. abortus]. Our results showed that specific antibody responses, dominated by immunoglobulin G2a in BALB/c mice, were induced by these conjugates. Sera from the immunized mice bound native gp120 expressed on the surfaces of cells infected with a recombinant vaccinia virus gp160 vector (VPE16). Sera from mice immunized with gp120(SF2)-B. abortus inhibited binding of soluble CD4 to gp120, whereas sera from mice immunized with V3-B. abortus were ineffective. Sera from mice immunized with either conjugate were capable of blocking syncytium formation between CD4+ CEM cells and H9 cells chronically infected with the homologous virus. Sera from mice immunized with gp120(SF2)-B. abortus were more potent than sera from mice immunized with V3-B. abortus in inhibiting syncytia from heterologous HIV-1 laboratory strains. Importantly, in primary and secondary responses, V3-B. abortus evoked anti-HIV MN antibodies in mice depleted of CD4+ cells, and sera from these mice were able to inhibit syncytia. These findings indicate that B. abortus can provide carrier function for peptides and proteins from HIV-1 and suggest that they could be used for immunization of individuals with compromised CD4+ T-cell function.  相似文献   

4.

Background

HIV-1 is a pathogen that T cell responses fail to control. HIV-1gp120 is the surface viral envelope glycoprotein that interacts with CD4 T cells and mediates entry. HIV-1gp120 has been implicated in immune dysregulatory functions that may limit anti-HIV antigen-specific T cell responses. We hypothesized that in the context of early SHIV infection, immune dysregulation of antigen-specific T-effector cell and regulatory functions would be detectable and that these would be associated or correlated with measurable concentrations of HIV-1gp120 in lymphoid tissues.

Methods

Rhesus macaques were intravaginally inoculated with a Clade C CCR5-tropic simian-human immunodeficiency virus, SHIV-1157ipd3N4. HIV-1gp120 levels, antigen-specificity, levels of apoptosis/anergy and frequency and function of Tregs were examined in lymph node and blood derived T cells at 5 and 12 weeks post inoculation.

Results/Conclusions

We observed reduced responses to Gag in CD4 and gp120 in CD8 lymph node-derived T cells compared to the peripheral blood at 5 weeks post-inoculation. Reduced antigen-specific responses were associated with higher levels of PD-1 on lymph node-derived CD4 T cells as compared to peripheral blood and uninfected lymph node-derived CD4 T cells. Lymph nodes contained increased numbers of Tregs as compared to peripheral blood, which positively correlated with gp120 levels; T regulatory cell depletion restored CD8 T cell responses to Gag but not to gp120. HIV gp120 was also able to induce T regulatory cell chemotaxis in a dose-dependent, CCR5-mediated manner. These studies contribute to our broader understanding of the ways in which HIV-1 dysregulates T cell function and localization during early infection.  相似文献   

5.
Nayak BP  Sailaja G  Jabbar AM 《Journal of virology》2003,77(20):10850-10861
DNA vaccines exploit the inherent abilities of professional antigen-presenting cells to prime the immune system and to elicit immunity against diverse pathogens. In this study, we explored the possibility of augmenting human immunodeficiency virus type 1 gp120-specific immune responses by a DNA vaccine coding for a fusion protein, CTLA4:gp120, in mice. In vitro binding studies revealed that secreted CTLA4:gp120 protein induced a mean florescence intensity shift, when incubated with Raji B cells, indicating its binding to B7 proteins on Raji B cells. Importantly, we instituted three different vaccination regimens to test the efficacy of DNA vaccines encoding gp120 and CTLA4:gp120 in the induction of both cellular (CD8(+)) and antibody responses. Each of the vaccination regimens incorporated a single intramuscular (i.m.) injection of the DNA vaccines to prime the immune system, followed by two booster injections. The i.m.-i.m.-i.m. regimen induced only modest levels of gp120-specific CD8(+) T cells, but the antibody response by CTLA4:gp120 DNA was nearly 16-fold higher than that induced by gp120 DNA. In contrast, using the i.m.-subcutaneous (s.c.)-i.m. regimen, it was found that gp120 and CTLA4:gp120 DNAs were capable of inducing significant levels of gp120-specific CD8(+) T cells (3.5 and 11%), with antibody titers showing a modest twofold increase for CTLA4:gp120 DNA. In the i.m.-gene gun (g.g.)-g.g. regimen, the mice immunized with gp120 and CTLA4:gp120 harbored gp120-specific CD8(+) T cells at frequencies of 0.9 and 2.9%, with the latter showing an eightfold increase in antibody titers. Thus, covalent antigen modification and the routes of genetic vaccination have the potential to modulate antigen-specific immune responses in mice.  相似文献   

6.
Nanoparticles are considered to be efficient tools for inducing potent immune responses by an Ag carrier. In this study, we examined the effect of Ag-carrying biodegradable poly(gamma-glutamic acid) (gamma-PGA) nanoparticles (NPs) on the induction of immune responses in mice. The NPs were efficiently taken up by dendritic cells (DCs) and subsequently localized in the lysosomal compartments. gamma-PGA NPs strongly induced cytokine production, up-regulation of costimulatory molecules, and the enhancement of T cell stimulatory capacity in DCs. These maturational changes of DCs involved the MyD88-mediated NF-kappaB signaling pathway. In vivo, gamma-PGA NPs were preferentially internalized by APCs (DCs and macrophages) and induced the production of IL-12p40 and IL-6. The immunization of mice with OVA-carrying NPs induced Ag-specific CTL activity and Ag-specific production of IFN-gamma in splenocytes as well as potent production of Ag-specific IgG1 and IgG2a Abs in serum. Furthermore, immunization with NPs carrying a CD8(+) T cell epitope peptide of Listeria monocytogenes significantly protected the infected mice from death. These results suggest that Ag-carrying gamma-PGA NPs are capable of inducing strong cellular and humoral immune responses and might be potentially useful as effective vaccine adjuvants for the therapy of infectious diseases.  相似文献   

7.
The entry of human immunodeficiency virus type 1 (HIV-1) into cells is initiated by binding of the viral glycoprotein gp120-gp41 to its cellular receptor CD4. The gp120-CD4 complex formed at the cell surface undergoes conformational changes that may allow its association with an additional membrane component(s) and the eventual formation of the fusion complex. These conformational rearrangements are accompanied by immunological changes manifested by altered reactivity with monoclonal antibodies specific for the individual components and presentation of new epitopes unique to the postbinding complex. In order to analyze the structure and function of the gp120-CD4 complex, monoclonal antibodies were generated from splenocytes of BALB/c mice immunized with soluble CD4-gp120 (IIIB) molecules (J. M. Gershoni, G. Denisova, D. Raviv, N. I. Smorodinsky, and D. Buyaner, FASEB J. 7:1185-1187 1993). One of those monoclonal antibodies, CG10, was found to be strictly complex specific. Here we demonstrate that this monoclonal antibody can significantly enhance the fusion of CD4+ cells with effector cells expressing multiple HIV-1 envelopes. Both T-cell-line-tropic and macrophage-tropic envelope-mediated cell fusion were enhanced, albeit at different optimal doses. Furthermore, infection of HeLa CD4+ (MAGI) cells by HIV-1 LAI, ELI1, and ELI2 strains was increased two- to fourfold in the presence of CG10 monoclonal antibodies, suggesting an effect on viral entry. These findings indicate the existence of a novel, conserved CD4-gp120 intermediate structure that plays an important role in HIV-1 cell fusion.  相似文献   

8.
Abstract Previous reports from our laboratory have demonstrated that peripheral blood monocytes (PBM) from HIV-1 infected individuals are de novo activated and are cytotoxic in vitro. Significant monocyte-antibody-dependent cellular cytotoxicity (ADCC) was obtained against HIV-1 inactivated CD4+ CEM target cells coated with HIV-1 in the presence of autologous seropositive serum. Based on these findings, we hypothesized that in HIV-seropositive individuals the monocytes may play an important role in vivo in the autodestruction of non-infected CD4+ T lymphocytes. The present study was designed to test this hypothesis. Monocytes from normal donors activated with M-CSF lysed CD4+ T cells (CEM) coated with gp120 sensitized by plasma from asymptomatic HIV-1+ individuals in a 8 h 51Cr release assay. ADCC cytotoxic activity varied from one individual to another and was a function of the dilution of the individual seropositive plasma used. We then used circulating CD3+ T lymphocytes as targets for ADCC following treatment with actinomycin D to facilitate the release of radioactive 51Cr. Like CEM, ADCC was obtained with CD3+ T cells coated with gp120 in the presence of HIV seropositive plasma and monocytes. Lysis was specific as T cells that were not coated with gp120 were not destroyed. These findings demonstrate that activated peripheral blood derived monocytes can destroy non-infected gp120-coated circulating T lymphocytes by an ADCC-mediated mechanism. Thus, these findings suggest that ADCC may be one mechanism operating in vivo for the destruction of non-infected CD4+ T lymphocytes.  相似文献   

9.
Virus-specific CD4(+) T cell responses have been shown to play a critical role in controlling HIV-1 replication. Candidate HIV-1 vaccines should therefore elicit potent CD4(+) as well as CD8(+) T cell responses. In this report we investigate the ability of plasmid GM-CSF to augment CD4(+) T cell responses elicited by an HIV-1 gp120 DNA vaccine in mice. Coadministration of a plasmid expressing GM-CSF with the gp120 DNA vaccine led to only a marginal increase in gp120-specific splenocyte CD4(+) T cell responses. However, immunization with a bicistronic plasmid that coexpressed gp120 and GM-CSF under control of a single promoter led to a dramatic augmentation of vaccine-elicited CD4(+) T cell responses, as measured by both cellular proliferation and ELISPOT assays. This augmentation of CD4(+) T cell responses was selective, since vaccine-elicited Ab and CD8(+) T cell responses were not significantly changed by the addition of GM-CSF. A 100-fold lower dose of the gp120/GM-CSF bicistronic DNA vaccine was required to elicit detectable gp120-specific splenocyte proliferative responses compared with the monocistronic gp120 DNA vaccine. Consistent with these findings, i.m. injection of the gp120/GM-CSF bicistronic DNA vaccine evoked a more extensive cellular infiltrate at the site of inoculation than the monocistronic gp120 DNA vaccine. These results demonstrate that bicistronic DNA vaccines containing GM-CSF elicit remarkably potent CD4(+) T cell responses and suggest that optimal Th cell priming requires the precise temporal and spatial codelivery of Ag and GM-CSF.  相似文献   

10.
Virus-specific CD4+ T cell help and CD8+ cytotoxic T cell responses are critical for maintenance of effective immunity in chronic viral infections. The importance of CD4+ T cells has been documented in HIV infection. To investigate whether a stronger CD4+ T cell response can be induced by modifications to enhance the T1 epitope, the first CD4+ T cell epitope discovered in HIV-1-gp120, we developed a T1-specific CD4+ T cell line from a healthy volunteer immunized with a canarypox vector expressing gp120 and boosted with recombinant gp120. This T1-specific CD4+ T cell line was restricted to DR13, which is common in U.S. Caucasians and African-Americans and very frequent in Africans. Peptides with certain amino acid substitutions in key positions induced enhanced specific CD4+ T cell proliferative responses at lower peptide concentration than the original epitope. This relatively conserved CD4 epitope improved by the epitope enhancement strategy could be a component of a more effective second generation vaccine construct for HIV infection.  相似文献   

11.
Human immunodeficiency virus (HIV) is a mucosally transmitted infection that rapidly targets and depletes CD4+ T cells in mucosal tissues and establishes a major reservoir for viral persistence in gut-associated lymphoid tissues. Therefore, vaccines designed to prevent HIV infections must induce potent and durable mucosal immune responses, especially in the genital tract. Here we investigated whether intranasal (i.n.) immunization with inactivated gp120-depleted HIV-1 antigen (Ag) plus CpG oligodeoxynucleotide (ODN) as an adjuvant induced local immune responses in the genital tract and cross-clade protection against intravaginal (IVAG) challenge. Lymphocytes isolated from the iliac lymph nodes (ILNs) and genital tracts of female mice i.n. immunized with HIV-1 Ag plus CpG showed significant HIV-specific proliferation and produced significantly higher levels of gamma interferon (IFN-gamma) and beta-chemokines than mice immunized with HIV-1 Ag alone or mixed with non-CpG ODN. CD8+ lymphocytes were dramatically increased in the genital tracts of mice immunized with HIV-1 Ag plus CpG, and protection following IVAG challenge with recombinant vaccinia viruses (rVVs) expressing HIV-1 gag was shown to be CD8 dependent. Finally, cross-clade protection was observed between clades A, C, and G but not B following IVAG challenge with rVVs expressing HIV-1 gag from different clades. These studies provide evidence that mucosal (i.n.) immunization induced strong local T-cell-mediated immune responses in the genital tract and cross-clade protection against IVAG challenge.  相似文献   

12.
RNA-based vaccines represent an interesting immunization modality, but suffer from poor stability and a lack of efficient and clinically feasible delivery technologies. This study evaluates the immunogenic potential of naked in vitro transcribed Semliki Forest virus replicon RNA (RREP) delivered intradermally in combination with electroporation. Replicon-immunized mice showed a strong cellular and humoral response, contrary to mice immunized with regular mRNA. RREP-elicited induction of interferon-γ secreting CD8+ T cells and antibody responses were significantly increased by electroporation. CD8+ T cell responses remained substantial five weeks post vaccination, and antigen-specific CD8+ T cells with phenotypic characteristics of both effector and central memory cells were identified. The immune response during the contraction phase was further increased by a booster immunization, and the proportion of effector memory cells increased significantly. These results demonstrate that naked RREP delivered via intradermal electroporation constitute an immunogenic, safe and attractive alternative immunization strategy to DNA-based vaccines.  相似文献   

13.
Enhanced cytotoxic T cell activity in IL-4-deficient mice   总被引:4,自引:0,他引:4  
CD8+ effectors are critical components of type 1 responses against viral infections as well as for antiviral vaccines. IL-4 plays a clear role as an inhibitor of CD4+ Th1 cells; however, its role in CD8+ T cell regulation appears to be more complex. Thus, IL-4 may augment CD8+ T cell growth, but also limit effector function. Moreover, abundant IL-4 is inhibitory for viral clearance, but the lack of IL-4 appears not to affect CTL-mediated immunity. This report investigates these disparate roles of IL-4 in CD8+ T lymphocyte regulation by comparing T cell responses specific for a single HIV-IIIIB gp120-derived epitope in BALB/c mice deficient in IL-4 to those in wild-type controls. CTL activation was monitored during the acute and memory phases following immunization with recombinant vaccinia virus. Similar frequencies of gp120-specific CTL precursors in splenocytes from both groups indicated that IL-4 plays no significant role in either CTL priming or the establishment of memory. However, cytolytic activity in cultures derived from IL-4-deficient mice developed earlier and was strikingly enhanced following in vitro restimulation, an effect exhibited by both primary and memory T cells. Secretion of IL-2 and IFN-gamma by CD8+ T cells from IL-4-deficient mice was also elevated, reflecting their enhanced activation. Thus, IL-4 appears to limit the activation, expansion, and differentiation of CD8+ T cells with high cytolytic potential.  相似文献   

14.
The stilbene disulfonic acids 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), 4,4'-diisothiocyanatodihydrostilbene-2,2'-disulfonic acid and, 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid bound the variable-1 immunoglobulin-like domain of CD4 on JM cells. The interaction blocked the binding of the anti-CD4 monoclonal antibody OKT4A and the envelope glycoprotein gp120 of the human immunodeficiency virus type-1 (HIV-1). DIDS inhibited the acute infection of CD4+ cells by HIV-1 with a potency (IC50 approximately 30 microM) similar to that which blocked gp120 binding (IC50 approximately 20 microM) to the cellular antigen. Pretreating uninfected CD4+ C8166 cells with DIDS blocked their fusion with chronically infected gp120+ cells. DIDS covalently and selectively modified lysine 90 of soluble CD4 and abolished the gp120-binding and antiviral properties of the recombinant protein. When added to cells productively infected with HIV-1, DIDS blocked virus growth and cleared cultures of syncytia without inhibiting cellular proliferation. The stilbene disulfonic acids are a novel class of site-specific CD4 antagonists that block multiple CD4-dependent events associated with acute and established HIV-1 infections.  相似文献   

15.
Although primary antiviral CD8+ cytotoxic T lymphocytes (CTL) can be induced in mice depleted of CD4+ T cells, the role of CD4+ T lymphocytes in the generation and maintenance of antiviral memory CTL is uncertain. This question, and the consequences upon vaccine-mediated protection, were investigated in transgenic CD4 knockout (CD4ko) mice, which lack CD4+ T lymphocytes. Infection of immunocompetent C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV), or with recombinant vaccinia viruses bearing appropriate LCMV sequences, induces long-lasting protective immunity, mediated mainly by antiviral CD8+ CTL. Here we report two important findings. First, LCMV-specific CD8+ memory CTL are maintained at considerably lower levels in CD4ko mice than in normal C57BL/6J mice; we demonstrate a reduction in precursor CTL evident as soon as 30 days postimmunization and declining, by day 120, to levels 1 to 2 log units below those in normal mice. Thus, CD4+ T cells appear to be important to the generation and maintenance of their CD8+ counterparts. Second, this reduction has an important biological consequence; compared with immunocompetent mice, CD4ko mice immunized with vaccinia virus recombinants expressing nucleoprotein or glycoprotein of LCMV are less effectively protected from subsequent LCMV challenge. Thus, this study underscores the potential importance of CD4+ T lymphocytes in generation of appropriate levels of CD(8+)-cell-mediated immunoprotective memory and has implications for vaccine efficacy in individuals with immune defects in which CD4 levels may be reduced, such as AIDS.  相似文献   

16.
Selection of potent yet low reactogenic adjuvants for protein immunization is important for HIV-1 vaccine development. Immunogenicity of electroporated DNA (HIV env) and recombinant gp120, administered with either QS-21 or the orally administered immunomodulator, Talabostat, was evaluated in BALB/c mice. Electroporation of low dose DNA elicited Th1 cytokines and anti-envelope antibodies. Immunization with gp120 protein alone with or without Talabostat elicited lower Th1 and Th2 cytokine levels but comparable anti-gp120 antibodies to QS-21-formulated protein. Boosting of DNA-primed mice with gp120/Talabostat induced similar anti-gp120 antibody titers and slightly higher levels of Th1 and Th2 cytokines relative to QS-21-formulated protein. Induction of CD8+ and CD4+ T cells and functional CTL activity was noted. These results highlight the potential use of orally administered Talabostat for efficient protein boosting of antibody and T-cell responses primed by DNA.  相似文献   

17.
The magnitude of immunologic defects observed in HIV-1-infected individuals before the development of overt AIDS is disproportionately high in comparison to the levels of infectious virus in these patients--suggesting that factors other than direct virus-induced cytopathology may be involved. With this in mind, we investigated the immunologic consequences of the interaction between purified HIV-1 gp120 and the CD4 molecules expressed by uncommitted as well as Ag-specific lymphocytes. HIV-1 gp120 exhibited a dose-dependent immunosuppressive effect on: 1) Ag-driven proliferation of cloned CD4+ lymphocytes, 2) OKT3-driven proliferation of cloned CD4+ lymphocytes, and 3) cytolytic activity of CD4+, EBV-specific CTL. Thus, HIV-1 gp120 can, in a manner similar to OKT4A antibodies, suppress T cell activation and the expression of cytolytic activities through its interaction with CD4. Additionally, activated CD4+ lymphoblasts can be rendered susceptible to immune cytolysis by virtue of their binding of purified gp120. This "targeting" of activated lymphoblasts can occur with levels of gp120 far below that which is needed to saturate all OKT4A-defined CD4 epitopes. Adsorbed gp120 could be demonstrated on the surface of these cells for up to 12 h, a sufficient time for interaction with host cytolytic elements. The data from these in vitro modeling experiments highlight one of many potential mechanisms of HIV-1 induced immunosuppression and lymphocyte destruction that can occur in the absence of infectious virus and that is based on the unique interaction between HIV-1 gp120 and its cellular receptor, CD4.  相似文献   

18.
The CD4 binding site (CD4BS) of the HIV-1 envelope glycoprotein (Env) contains epitopes for broadly neutralizing antibody (nAb) and is the target for the vaccine development. However, the CD4BS core including residues 425-430 overlaps the B cell superantigen site and may be related to B cell exhaustion in HIV-1 infection. Furthermore, production of nAb and high-affinity plasma cells needs germinal center reaction and the help of T follicular helper (Tfh) cells. We believe that strengthening the ability of Env CD4BS in inducing Tfh response and decreasing the effects of the superantigen are the strategies for eliciting nAb and development of HIV-1 vaccine. We constructed a gp120 mutant W427S of an HIV-1 primary R5 strain and examined its ability in the elicitation of Ab and the production of Tfh by immunization of BALB/c mice. We found that the trimeric wild-type gp120 can induce more non-specific antibody-secreting plasma cells, higher serum IgG secretion, and more Tfh cells by splenocyte. The modified W427S gp120 elicits higher levels of specific binding antibodies as well as nAbs though it produces less Tfh cells. Furthermore, higher Tfh cell frequency does not correlate to the specific binding Abs or nAbs indicating that the wild-type gp120 induced some non-specific Tfh that did not contribute to the production of specific Abs. This gp120 mutant led to more memory Tfh production, especially, the effector memory Tfh cells. Taken together, W427S gp120 could induce higher level of specific binding and neutralizing Ab production that may be associated with the reduction of non-specific Tfh but strengthening of the memory Tfh.  相似文献   

19.
We investigated long-term memory and recall cellular immune responses to human immunodeficiency virus type 1 (HIV-1) Env and Gag proteins elicited by recombinant vesicular stomatitis viruses (VSVs) expressing Env and Gag. More than 7 months after a single vaccination with VSV-Env, approximately 6% of CD8(+) splenocytes stained with major histocompatibility complex class I tetramers containing the Env p18-I10 immunodominant peptide and showed a memory phenotype (CD44(Hi)). The level of tetramer-positive cells in memory was about 14% of the peak primary response. Recall responses elicited in these mice 5 days after boosting with a heterologous recombinant vaccinia virus expressing HIV-1 Env showed that 40 to 45% of CD8(+) splenocytes were tetramer positive and activated (CD62L(Lo)), and these cells produced gamma interferon after stimulation with Env peptide, indicating that they were functional. Five months after the boost, the long-term memory cell population (tetramer positive, CD44(Hi)) constituted 30% of the CD8(+) splenocytes. Recall responses to HIV-1 Gag were examined in mice primed with VSV recombinants expressing HIV-1 Gag protein and boosted with a vaccinia virus recombinant expressing Gag. Using this protocol, we found that approximately 40% of CD8(+) splenocytes were activated (CD62L(Lo)) and specific for a Gag immunodominant peptide (tetramer positive). The high-level Gag recall response elicited by the vaccinia virus-Gag was greater than that obtained by boosting with a VSV-Gag vector with a different VSV glycoprotein. The corresponding levels of CD44(Hi) memory cells were also higher long after boosting with vaccinia virus-Gag than after boosting with a glycoprotein exchange VSV-Gag. Our results show that VSV vectors elicit high-level memory CTL responses and that these can be amplified as much as six- to sevenfold using a heterologous boosting vector.  相似文献   

20.
Cell-mediated immunity depends in part on appropriate migration and localization of cytotoxic T lymphocytes (CTL), a process regulated by chemokines and adhesion molecules. Many viruses, including human immunodeficiency virus type 1 (HIV-1), encode chemotactically active proteins, suggesting that dysregulation of immune cell trafficking may be a strategy for immune evasion. HIV-1 gp120, a retroviral envelope protein, has been shown to act as a T-cell chemoattractant via binding to the chemokine receptor and HIV-1 coreceptor CXCR4. We have previously shown that T cells move away from the chemokine stromal cell-derived factor 1 (SDF-1) in a concentration-dependent and CXCR4 receptor-mediated manner. Here, we demonstrate that CXCR4-binding HIV-1 X4 gp120 causes the movement of T cells, including HIV-specific CTL, away from high concentrations of the viral protein. This migratory response is CD4 independent and inhibited by anti-CXCR4 antibodies and pertussis toxin. Additionally, the expression of X4 gp120 by target cells reduces CTL efficacy in an in vitro system designed to account for the effect of cell migration on the ability of CTL to kill their target cells. Recombinant X4 gp120 also significantly reduced antigen-specific T-cell infiltration at a site of antigen challenge in vivo. The repellant activity of HIV-1 gp120 on immune cells in vitro and in vivo was shown to be dependent on the V2 and V3 loops of HIV-1 gp120. These data suggest that the active movement of T cells away from CXCR4-binding HIV-1 gp120, which we previously termed fugetaxis, may provide a novel mechanism by which HIV-1 evades challenge by immune effector cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号