首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of veterinary antibiotics in anaerobic digesters is a concern where methane production efficiency is highly dependent on microbial community structure. In this study, both anaerobic degradation of a common veterinary antibiotic, oxytetracycline (OTC), and its effects on an anaerobic digester microbial community were investigated. Qualitative and quantitative molecular tools were used to monitor changes in microbial community structure during a 60-day batch incubation period of cow manure with the addition of different concentrations of the antibiotic. Molecular data were interpreted by a further redundancy analysis as a multivariate statistics approach. At the end of the experiment, approximately 48, 33, and 17 % of the initially added 50, 100, and 200 mg l?1 of OTC was still present in the serum bottles which reduced the biogas production via accumulation of some of the volatile fatty acids (VFAs). Biogas production was highly correlated with Methanobacteriales and Methanosarcinales gene copy numbers, and those parameters were negatively affected with oxytetracycline and VFA concentrations.  相似文献   

2.
The potential activity of methane production was determined in the vertical profiles of the peat deposits of three bogs in Tver oblast, which were representative of the boreal zone. In the minerotrophic fen, the rates of methane production measured throughout the profile did not change significantly with depth and comprised 3-6 ng CH4-C g(-1) h(-1). In ombrotrophic peat bogs, the rate did not exceed 5 ng CH4-C g(-1) h(-1) in the upper layer of the profile (up to 1.5 m) and increased to 15-30 ng CH4-C g(-1) h(-1) in the deep layers of the peat deposits. The distribution of fermentative microorganisms and methanogens in the profiles of peat deposits was uniform in all the studied bogs. In bog water samples, the presence of butyrate (up to 14.1 mg l(-1)) and acetate (up to 2.4 mg l(-1)) was revealed throughout the whole profile; in the upper 0.5-m layer of the ombrotrophic bogs, formate (up to 8.9 mg l(-1)) and propionate (up to 0.3 mg l(-1)) were detected as well. The arrangement of local maxima of the fatty acid content and methanogenic activity in the peat deposits, as well as the decrease in the acetate concentrations during summer, support the hypothesis that the initial substrates for methanogenesis come from the upper peat layers. It was established that the addition of sulfate and nitrate inhibits methane production in peat samples: the changes in the concentrations, recorded in situ, may also influence the methane content in peat layers.  相似文献   

3.
A number of researchers have verified the inhibitory effects of elevated H2 concentrations on various anaerobic fermentation processes. The objective of this work was to investigate the potential for using hydrogen gas production to predict upsets in anaerobic digesters operating on dairy cattle manure. In an ammonia nitrogen overload experiment, urea was added to the experimental digesters to obtain increased ammonia concentrations (600, 1,500, or 3,000 mg N/l). An increase in urea concentration resulted in an initial cessation of H2 production followed by an increase in H2 formation. Additions of 600, 1,500, or 3,000 mg N/l initially resulted in the reduction of biogas H2 concentrations. After 24 h, the H2 concentration increased in the 600 and 1,500 mg N/l digesters, but production remained inhibited in the 3,000 mg N/l digesters. Both methane and total biogas production decreased following urea addition. Volatile solids reduction also decreased during these periods. The digester effluent pH and alkalinity increased due to the increased NH4 formed with added urea. Based on these results, changes in H2 concentration could be a useful parameter for monitoring changes due to increased NH3 in dairy cattle manure anaerobic digesters.  相似文献   

4.
The effect of substrate (glucose) concentrations and alkalinitiy (NaHCO3) on the decolorization of a synthetic wastewater containing Congo Red (CR) azo dye was performed in an upflow anaerobic sludge blanket (UASB). Color removal efficiencies approaching 100% were obtained at glucose-COD concentrations varying between 0 and 3000 mg/l. The methane production rate and total aromatic amine (TAA) removal efficiencies were found to be 120 ml per day and 43%, respectively, while the color was completely removed during glucose-COD free operation of the UASB reactor. The complete decolorization of CR dye under co-substrate free operation could be attributed to TAA metabolism which may provide the electrons required for the cleavage of azo bond in CR dye exist in the UASB reactor. No significant differences in pH levels (6.6-7.4), methane production rates (2000-2700 ml/day) and COD removal efficiencies (82-90%) were obtained for NAHCO3 concentrations ranging between 550 and 3000 mg/l. However, decolorization efficiency remained at 100% with decreasing NaHCO3 concentrations as low as 250 mg/l in the feed. An alkalinity/COD ratio of 0.163 in the feed was suggested for simultaneous optimum COD and color removal.  相似文献   

5.
The effects of incubations conditions (dilution, mixing, incubation time and inoculum amount and origin) on the determination of the maximum methane producing capacity (B(0)) from various livestock slurries were evaluated. For this purpose, the methane yields of different livestock slurries were determined using batch anaerobic incubations performed at 30 degrees C as regard these different conditions. The B(0) and the methane (CH(4)) generation as a function of time were used to study the processes and to determine the best incubation conditions. Methanogenesis was identified as the major rate-limiting step during the anaerobic degradation of slurries, probably due to inhibition by volatile fatty acids. In some cases, high free NH(3) concentrations were suspected to inhibit the hydrolysis process. The addition of inoculum and/or the dilution of the substrate reduced the inhibition and allowed to reach the B(0) more rapidly. However, the addition of inoculum must be minimized to reduce the possible errors made by considering a similar production by the inoculum with and without the substrate. All experiments performed during this study allowed to define the incubation conditions required for the determination of the B(0) from livestock slurries. Applying these conditions, the B(0) values determined for swine slurries varied from 244 to 343L CH(4)kg V(added)(-1), from 204 to 296L CH(4)kg V(added)(-1) for dairy cattle slurries and equalled 386 and 319L CH(4)kg VS(added)(-1) respectively for calves and duck slurries.  相似文献   

6.
Microbiological and biogeochemical studies of the meromictic saline Lake Shira (Khakasia) were conducted. In the upper part of the hydrogen-sulfide zone, at a depth of 13.5-14 m, there was a pale pink layer of water due to the development of purple bacteria (6 x 10(5) cells/ml), which were assigned by their morphological and spectral characteristics to Lamprocystis purpureus (formerly Amoebobacter purpurea). In August, the production of organic matter (OM) in Lake Shira was estimated to be 943 mg C/(m2 day). The contribution of anoxygenic photosynthesis was insignificant (about 7% of the total OM production). The share of bacterial chemosynthesis was still less (no more than 2%). In the anaerobic zone, the community of sulfate-reducing bacteria played a decisive role in the terminal decomposition of OM. The maximal rates of sulfate reduction were observed in the near-bottom water (114 micrograms S/(1 day)) and in the surface layer of bottom sediments (901 micrograms S/(dm3 day)). The daily expenditure of Corg for sulfate reduction was 73% of Corg formed daily in the processes of oxygenic and anoxygenic photosynthesis and bacterial chemosynthesis. The profile of methane distribution in the water column and bottom sediments was typical of meromictic reservoirs. The methane content in the water column increased beginning with the thermocline (7-8 m), and reached maximum values in the near-bottom water (17 microliters/l). In bottom sediments, the greatest methane concentrations (57 microliters/l) were observed in the surface layer (0-3 cm). The integral rate of methane formation in the water column and bottom sediments was almost an order of magnitude higher than the rate of its oxidation by aerobic and anaerobic methanotrophic microorganisms.  相似文献   

7.
When 2,4,6-TCP (trichlorophenol) as a toxicant was added to the reactors with 500, 1000, 2000 and 4000 mg COD/l, methane production ratios between the reactors with and without toxicant were 64, 75, 83 and 96 %. The 2,4,6-TCP was more toxic to methane production at COD concentrations lower than 1000 mg/l. In continuous operation, when the toxicant was fed to the reactor, methane production rate (CH4-l/g-COD) recovered in four days.  相似文献   

8.
猪粪和土霉素对不同肥力土壤微生物数量及活性的影响   总被引:3,自引:0,他引:3  
章明奎  刘兆云 《应用生态学报》2009,20(11):2790-2798
在不施肥和施用猪粪两种情况下,采用培养试验研究了不同浓度土霉素污染(0、0.1、1、10、100和1000 mg·kg-1)对土壤细菌丰度、酶活性和NO3-N浓度等的影响.试验培养温度为25 ℃,培养时间为30 d,取样分析时间分别为1、4和30 d.结果表明:在不施肥条件下,土霉素污染对土壤细菌数量及微生物活性的影响较小,土壤S1、S2和S3细菌数量、呼吸强度、酶活性和NO3-N浓度下降10%时土霉素的剂量(EC10)分别为36~1000 mg·kg-1、20~1000 mg·kg-1和4~1000 mg·kg-1;而在施用猪粪的情况下,对应的数值分别为2~656 mg·kg-1、2~81 mg·kg-1和1~42 mg·kg-1.添加土霉素对土壤细菌及酶活性的影响随土壤肥力的提高而增大,且其对土壤细菌数量和呼吸强度的影响大于对酶活性和NO3-N浓度的影响.土霉素污染对土壤微生物数量和活性的影响随时间变化而变化,一般在培养4 d时的影响最为明显.土霉素对土壤微生物的影响总体上表现为抑制作用.  相似文献   

9.
Anaerobic biological wastewater treatment has numerous advantages over conventional aerobic processes; anaerobic biotechnologies, however, still have a reputation for low-quality effluents and operational instabilities. In this study, anaerobic bioreactors were augmented with an oxygen-transferring membrane to improve treatment performance. Two anaerobic bioreactors were fed a synthetic high-strength wastewater (chemical oxygen demand, or COD, of 11,000 mg l(-1)) and concurrently operated until biomass concentrations and effluent quality stabilized. Membrane aeration was then initiated in one of these bioreactors, leading to substantially improved COD removal efficiency (> 95%) compared to the unaerated control bioreactor (approximately 65%). The membrane-augmented anaerobic bioreactor required substantially less base addition to maintain circumneutral pH and exhibited 75% lower volatile fatty acid concentrations compared to the unaerated control bioreactor. The membrane-aerated bioreactor, however, failed to improve nitrogenous removal efficiency and produced 80% less biogas than the control bioreactor. A third membrane-augmented anaerobic bioreactor was operated to investigate the impact of start-up procedure on nitrogenous pollutant removal. In this bioreactor, excellent COD (>90%) and nitrogenous (>95%) pollutant removal efficiencies were observed at an intermediate COD concentration (5,500 mg l(-1)). Once the organic content of the influent wastewater was increased to full strength (COD = 11,000 mg l(-1)), however, nitrogenous pollutant removal stopped. This research demonstrates that partial aeration of anaerobic bioreactors using oxygen-transferring membranes is a novel approach to improve treatment performance. Additional research, however, is needed to optimize membrane surface area versus the organic loading rate to achieve the desired effluent quality.  相似文献   

10.
Concentrations of volatile organic sulfur compounds (VOSC) were measured in water and sediment columns of ditches in a minerotrophic peatland in The Netherlands. VOSC, with methanethiol (4 to 40 nM) as the major compound, appeared to be mainly of sediment origin. Both VOSC and hydrogen sulfide concentrations decreased dramatically towards the water surface. High methanethiol and high dimethyl sulfide concentrations in the sediment and just above the sediment surface coincided with high concentrations of hydrogen sulfide (correlation factors, r = 0.91 and r = 0.81, respectively). Production and degradation of VOSC were studied in 32 sediment slurries collected from various freshwater systems in The Netherlands. Maximal endogenous methanethiol production rates of the sediments tested (up to 1.44 (mu)mol per liter of sediment slurry (middot) day(sup-1)) were determined after inhibition of methanogenic and sulfate-reducing populations in order to stop VOSC degradation. These experiments showed that the production and degradation of VOSC in sediments are well balanced. Statistical analysis revealed multiple relationships of methanethiol production rates with the combination of methane production rates (indicative of total anaerobic mineralization) and hydrogen sulfide concentrations (r = 0.90) or with the combination of methane production rates and the sulfate/iron ratios in the sediment (r = 0.82). These findings and the observed stimulation of methanethiol formation in sediment slurry incubations in which the hydrogen sulfide concentrations were artificially increased provided strong evidence that the anaerobic methylation of hydrogen sulfide is the main mechanism for VOSC formation in most freshwater systems. Methoxylated aromatic compounds are likely a major source of methyl groups for this methylation of hydrogen sulfide, since they are important degradation products of the abundant biopolymer lignin. Increased sulfate concentrations in several freshwater ecosystems caused by the inflow of water from the river Rhine into these systems result in higher hydrogen sulfide concentrations. As a consequence, higher fluxes of VOSC towards the atmosphere are conceivable.  相似文献   

11.
The addition of iron hydroxide and iron-reducing bacteria into a fermenter for anaerobic processing of sulfate-containing sewage was shown to decrease sulfate reduction and sulfide concentration, while increasing the total organic carbon (TOC) and methane production. The effect of iron (III) in sulfate-containing sewage depended on its dose, which can be expressed as molar ratio Fe(III)/SO4(2-). Sulfide concentration increased monotonically, reaching 91 mg/l and 45 mg/l after 15 days of processing at Fe(III)/SO4(2-) ratios of 0.06 and 0.5, respectively. However, soluble sulfide production was not observed at ratios equaling 1 and 2. At ratios of 0.06, 0.5, 1, and 2, the maximum rates of TOC removal were 0.75, 1.15, 1.39, and 1.55 g TOC/g of organic matter (OM) per 1 h. Methane production rates were 0.039, 0.047, 0.064, and 0.069 mg/g OM per 1 h, with the mean relative amounts of methane in the biogas being equal to 25, 41, 55, and 62%, respectively. These data can be applied to the development of new methods of anaerobic purification of sulfate-containing sewage.  相似文献   

12.
AIMS: The present work aimed to design an optimized medium to yield a higher production of glycosides by Pseudoalteromonas issachenkonii KMM 3549(T). METHODS AND RESULTS: Higher levels of fucoidan hydrolase, alginase, laminaranase and b-N-acetylglucosaminidase production were obtained with peptone concentrations ranging from 2.5 g l(-1) to 10 g l(-1), while the presence of both yeast extract and glucose did not affect enzyme production. The activity of fucoidan hydrolase and laminaranase increased up to 4.83 microM h(-1) mg(-1) and 19.23 microM h(-1) mg(-1) protein, respectively, in growth media containing xylose (1.0 g l(-1)), laminarin (0.5 g l(-1)) or alginate (0.5 g l(-1)), and production of b-N-acetylglucosaminidase substantially increased in the presence of fucoidan (0.5 g l(-1)) or galactose (1 g l(-1)). All polysaccharides tested in concentrations of 0.5 g l(-1) fucoidan and 0.2 g l(-1) fucose induced production of alginase (up to 5.06 microM h(-1) mg-1 protein). CONCLUSIONS: The production of glycosidases is not only stimulated by the presence of algal polysaccharides, but may also be stimulated by monosaccharides (e.g. xylose). SIGNIFICANCE AND IMPACT OF THE STUDY: The production of glycosidases by Pseudoalteromonas issachenkonii KMM 3549(T) was significantly improved by using a simple nutrient medium containing peptone (2.5 g l(-1)) and xylose (5.0 g l(-1)) in 100% natural seawater.  相似文献   

13.
The effect of an inorganic additive on the methane production from NH(4+)-rich organic sludge during anaerobic digestion was investigated using different kinds of inorganic adsorbent zeolites (mordenite, clinoptilolite, zeolite 3A, zeolite 4A), clay mineral (vermiculite), and manganese oxides (hollandite, birnessite). The additions of inorganic materials resulted in significant NH4+ removals from the natural organic sludge ([NH4+]=1, 150 mg N/l), except for the H-type zeolite 3A and birnessite. However, an enhanced methane production was only achieved using natural mordenite. Natural mordenite also enhanced the methane production from the sludge with a markedly high NH4+ concentration (4500 mg N/l) during anaerobic digestion. Chemical analyses of the sludge after the digestion showed considerable increases in the Ca2+ and Mg2+ concentrations in the presence of natural mordenite, but not with synthetic zeolite 3A. The effect of Ca2+ or Mg2+ addition on the methane production was studied using Na(+)-exchanges mordenite and Ca2+ or Mg(2+)-enriched sludge. The simultaneous addition of Ca2+ ions and Na(+)-exchanged mordenite enhanced the methane production; the amount of produced methane was about three times greater than that using only the Na(+)-exchanged mordenite. In addition, comparing the methane production by the addition of natural mordenite or Ca2+ ions, the methane production with natural mordenite was about 1.7 times higher than that with only Ca2+ ions. The addition of 5% and 10% natural mordenite were suitable condition for obtaining a high methane production. These results indicated that the Ca2+ ions, which are released from natural mordenite by a Ca2+/NH4+ exchange, enhanced the methane production of the organic waste at a high NH4+ concentration. Natural mordenite has a synergistic effect on the Ca2+ supply as well on the NH4+ removal during anaerobic digestion, which is effective for the mitigation of NH4+ inhibition against methane production.  相似文献   

14.
The effects of leachate recirculation and the recirculation rate on the anaerobic treatment of domestic solid waste was investigated in three simulated landfill anaerobic bioreactors. A single pass reactor was operated without leachate recirculation while the other two reactors were operated with leachate recirculation. The leachate recirculation rate was 9 l/day (13% of the reactor volume) in Reactor9, while the recirculation rate was 21 l/day (30% of the reactor volume), in Reactor21. pH, chemical oxygen demand (COD), volatile fatty acids (VFA), ammonium–nitrogen (NH4–N) total and methane gas measurements in leachate samples were regularly monitored. After 220 days of anaerobic incubation, it was observed that the pH, COD, VFA concentrations, methane gas productions and methane percentages in Reactor9 were better than the single pass reactor and Reactor21. When the leachate recirculation rate was increased to three times a decrease in pH, and an increase in VFA and COD concentrations were observed in Reactor21. The COD values were measured as 47 000, 39 000 and 52 000 mg/l while the VFA concentrations were 15 000, 13 000 and 21 000 mg/l, respectively, in single pass, Reactor9 and Reactor21 after 220 days of anaerobic incubation. The values of pH were 5.89, 6.44 and 6.16, respectively, after anaerobic incubation. The mean methane percentages of single pass reactor, Reactor9 and Reactor21 were 30, 50 and 40%, respectively, after 50 days of incubation. Leachate recirculation reduced the waste stabilization time and was effective in enhancing methane gas production and improving leachate. However, leachate recirculation was not effective in removing ammonia from the leachate. The amounts of COD recovered by methane were 62.9, 162.3 and 94.6 g for single pass, Reactor9 and Reactor21, respectively, at the end of 220 days of anaerobic incubation.  相似文献   

15.
Medium optimization for the production of constitutive recombinant Helicobacter pylori neutrophil activating protein (NAP) in Escherichia coli was investigated by using response surface methodology. Carbon to nitrogen ratio, concentrations of sodium polyphosphate and magnesium sulfate were considered as independent variables. The optimized medium was a chemically defined medium with a carbon to nitrogen ratio of 14.4 and with concentrations of sodium polyphosphate and magnesium sulfate about 7.1 g l(-1) and 3.04 g l(-1) respectively. The maximum recombinant NAP production level (1184.6 mg l(-1)) was 29.96% higher than that in control medium.  相似文献   

16.
The performance of a mesophilic two-stage system generating hydrogen and methane continuously from sucrose (10-30 g/L) was investigated. A hydrogen-generating CSTR followed by an upflow anaerobic filter were both inoculated with anaerobically digested sewage sludge, and ORP, pH, gas output, %H(2), %CH(4) and %CO(2) monitored. pH was controlled with NaOH, KOH or Ca(OH)(2). Using NaOH as alkali with 10 g/L sucrose, yields of 1.62 +/- 0.2 mol H(2)/mol hexose added and 323 mL CH(4)/gCOD added to the hydrogen and methane reactors respectively were achieved. The overall chemical oxygen demand (COD) reduction was 92.6% with 0.90 +/- 0.1 g/L sodium and 316 +/- 40 mg/L residual acetate in the methane reactor. Operation at 20 g/L sucrose and NaOH as alkali led to impaired volatile fatty acid (VFA) degradation in the methane reactor with 2.23 +/- 0.2 g/L sodium, 1,885 mg/L residual acetate, a hydrogen yield of 1.47 +/- 0.1 mol/mol hexose added, a methane yield of 294 mL/gCOD added and an overall COD reduction of 83%. Using Ca(OH)(2) as alkali with 20 g/L sucrose gave a hydrogen yield of 1.29 +/- 0.3 mol/mol hexose added, a methane yield of 337 mL/gCOD added and improved the overall COD reduction to 91% with residual acetate concentrations of 522 +/- 87 mg/L. Operation at 30 g/L sucrose with Ca(OH)(2) gave poorer overall COD reduction (68%), a hydrogen yield of 1.47 +/- 0.2 mol/mol hexose added, a methane yield of 138 mL/gCOD added and residual acetate 7,343 +/- 715 mg/L. It was shown that sodium toxicity and overloading are important issues for successful anaerobic digestion of effluent from biohydrogen reactors in high rate systems.  相似文献   

17.
Summary Improved techniques are needed to predict potential methane generation from refuse buried in landfills. The Biochemical Methane Potential (BMP) test was used to measure the methane potential of ten refuse samples excavated from a Berkeley, CA, landfill. The test was conducted in 125-ml serum bottles containing phosphate-buffered medium and inoculated with anaerobically digested sewage sludge. Comparison of the measured BMP to the theoretical BMP calculated from measured cellulose and hemicellulose concentrations indicated that cellulose plus hemicellulose is not well correlated with the measured BMP. The average of the measured to theoretical BMP was 19.1% (range 0–53%, s.d.=16.9%). Measured sulfate concentrations showed that sulfate was an insignificant electron sink in the samples tested. Once methane production from the refuse was complete, 0.072 g of Whatman no. 1 filter paper was added to two of the four serum bottles incubated for each sample. An average of 84.9% (s.d=2.5%) of the added filter paper was recovered as methane, suggesting that some cellulose and hemicellulose present in refuse is recalcitrant or otherwise not bioavailable.  相似文献   

18.
AIMS: Rhodovulum sulfidophilum was grown in sardine processing wastewater to assess growth characteristics for the production of bacterial biomass with simultaneous reduction of chemical oxygen demand. METHODS AND RESULTS: Growth characteristics were compared in diluted and undiluted, settled and non-settled wastewater growing in anaerobic light and aerobic dark conditions; and also at different agitation speeds. The highest biomass (8.75 g l(-1)) and a reduction in chemical oxygen demand of 71% were obtained in unsettled, undiluted wastewater after 120 h culture with 15% inoculum. In settled wastewater, highest biomass (7.64 g l(-1)) and a COD reduction of 77% was also obtained after 120 h. Total biomass was higher (4.34 g l(-1)) after 120 h culture in anaerobic light compared to (3.23 g l(-1)) in aerobic dark growth. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Better performance, mean of total biomass (6.97 g l(-1) after 96 h), total carotenoids (4.24 mg g(-1) dry cell from 24 h) and soluble protein (431 microg ml(-1) after 96 h) were obtained from aerobic dark culture at 300 rev min(-1). The COD reduction, however, was lower (69%) after 96 h culture. Thus, the benefits in the production of bacterial biomass in non-sterilized sardine processing wastewater with the reduction of chemical oxygen demand could be achieved.  相似文献   

19.
In a batch mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae, which could assimilate lactic acid, cell growth and kefiran production rates of L. kefiranofaciens significantly increased, compared with those in pure cultures. The kefiran production rate was 36 mg l(-1) h(-1) in the mixed culture under the anaerobic condition, which was greater than that in the pure culture (24 mg l(-1) h(-1)). Under the aerobic condition, a more intensive interaction between these two strains was observed and higher kefiran production rate (44 mg l(-1) h(-1)) was obtained compared with that under the anaerobic condition. Kefiran production was further enhanced by an addition of fresh medium in the fed-batch mixed culture. In the fed-batch mixed culture, a final kefiran concentration of 5.41 g l(-1) was achieved at 87 h, thereby attaining the highest productivity at 62 mg l(-1) h(-1). Simulation study considered the reduction of lactic acid in pure culture was performed to estimate the additional effect of coculture with S. cerevisiae. Slightly higher cell growth and kefiran production rates in the mixed culture than those expected from pure culture by simulation were observed. These results suggest that coculture of L. kefiranofaciens and S. cerevisiae not only reduces the lactic acid concentration by consumption but also stimulates cell growth and kefiran production of L. kefiranofaciens.  相似文献   

20.
AIMS: The ability of Azotobacter vinelandii, a N(2)-fixing bacterium, to biodegrade tetracyanonickelate (TCN) was evaluated. METHODS AND RESULTS: The amounts of TCN were measured spectrophotometrically. Ammonia was determined colorimetrically by the indophenol method. The produced methane from TCN conversion by A. vinelandii was detected by gas chromatography. Results showed that A. vinelandii was able to biodegrade 1 mmol l(-1) of TCN. Ammonia and methane were detected during the process of TCN degradation. Effects of exogenous nitrogen sources on TCN degradation were addressed in this study. Results revealed that the addition of ammonia (1, 5 and 10 mmol l(-1)) into the reaction mixtures caused decrease of TCN degradation rate during a 24-h incubation period. This inhibition was also observed when nitrite (5 and 10 mmol l(-1)) was added, whereas TCN degradation still proceeded after the addition of nitrate at the same concentrations. Furthermore, the rate of TCN utilization was strikingly enhanced when 0.8% of glucose was added. CONCLUSIONS: Azotobacter vinelandii can degrade 1 mmol l(-1) of TCN into ammonia and methane. However, the inhibitory effects of exogenous ammonia and nitrite on TCN degradation by this bacterium were found in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report defining the capability of A. vinelandii to degrade TCN. This bacterium might have potential value in applied strategies for removing metal-cyano wastes. Furthermore, these findings would be helpful in designing a practical system inoculated with A. vinelandii for the treatment of TCN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号