首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thymidylate synthase activity in sea urchin eggs increases just after fertilization and decreases 30 min later. Then, cyclic variation in the activity occurs in association with the cleavage cycle. Dihydrofolate reductase activity in fertilized eggs is almost the same as in unfertilized eggs and shows no marked change within 3 hr after fertilization. Aminopterin, an analogue of dihydrofolate, inhibits dihydrofolate reductase, and arrests cleavage. On incubation in sea water containing aminopterin (20-100μM) from the time of fertilization, the development of Clypeaster and Pseudocentrotus eggs was arrested at the 32–64 cell stage, and that of Anthocidaris eggs was arrested at the morula stage. Dihydrofolate (100μM) counteracts the inhibitory effect of aminopterin on egg cleavage. Thymidine at concentrations above 10μM also prevents inhibition by aminopterin. Other deoxyribonucleosides at concentrations of 10μM to 100μM do not affect inhibition of egg cleavage by aminopterin. Deoxyadenosine at concentrations above 5 mM inhibits egg cleavage, but other deoxyribonucleosides have no effect.  相似文献   

2.
The activity of the pyruvate dehydrogenase complex in sea urchin eggs is localized in the crude mitochondrial fraction. The activity of the enzyme complex in the intact mitochondrial fraction of unfertilized eggs is too low to be estimated and is enhanced upon fertilization with a 5-min lag period. The activity of the enzyme complex in unfertilized eggs is enhanced by Ca2+at concentrations between 5 × 10?5 M and 10?3 M. The activity in fertilized eggs is blocked after incubation with 2 mM ATP, and the block of the activity is also released by Ca2+. The blockage of the enzyme complex activity is accompanied by phosphorylation of proteins, and release of the block by Ca2+ is concomitantly followed by the dephosphorylation of proteins in the mitochondrial fraction. The enzyme complex in unfertilized eggs will be assumed to be the one inhibited by phosphorylation. The enzyme complex will be activated upon fertilization as a consequence of the dephosphorylation, that is caused by the increase in intracellular concentration of Ca2+.  相似文献   

3.
The activity of fructose 1,6-bisphosphatase [EC 3.1.3.11] in sea urchin eggs decreased following fertilization. During the first 30 min after fertilization, the activity was considerably lower than that in unfertilized eggs, but by 30 min the activity was similar to that in unfertilized eggs. The enzyme activity in fertilized eggs, estimated in the presence of EGTA, was similar to that in unfertilized eggs. The activity in unfertilized eggs was reduced by Ca2+ at concentrations between 1 X 10(-5) M and 5 X 10(-3) M. Immediately after fertilization, the enzyme was insensitive to concentrations of Ca2+ lower than 2 X 10(-4) M, but the Ca2+ sensitivity of the enzyme recovered 30 min after fertilization. In the presence of Ca2+ at concentrations higher than 2 X 10(-4) M, the enzyme activity in unfertilized eggs was similar to that in fertilized eggs. Mg2+ restored the Ca2+-induced inhibition of fructose 1,6-bisphosphatase. 3-Phosphoglycerate and citrate hardly affected the enzyme activity, and AMP at concentrations above 10 mM inhibited it.  相似文献   

4.
During the early development of the sea urchin, Anthocidaris crassispina, the activity of lipase was maintained at the same level as in unfertilized eggs until the mesenchymal blastula stage (20 hr culture at 20°C) and then increased gradually after gastrulation. The activity in the embryos kept in SO2?4-free artificial sea water changed in a similar manner to that in those kept in normal sea water, during the development until 36 hr of fertilization. At 48 hr, the activity in the embryos, which had developed to the permanent blastulae in SO2?4-free sea water, was markedly lower than in normal plutei and was similar to that in unfertilized eggs. The lipase activity in fertilized eggs 30 min after fertilization, which was almost the same as that in unfertilized eggs was found mainly to be localized in the precipitate fraction obtained by the centrifugation at 12,000 x g for 20 min, whereas the activity in unfertilized eggs was found in the precipitate by the centrifugation at 105,000 x g for 60 min. Ca2+, adenosine 3′, 5′-cyclic monophosphate (cAMP) and guanosine 3′, 5′-cyclic monophosphate (cGMP) had no effect on the lipase activity.  相似文献   

5.
Protein kinase, which phosphorylated phosvitin at the expense of ATP but did not phosphorylate casein, protamine, and histone mixture, was obtained by DEAE-cellulose column chromatography of the extract from the embryos of the sea urchin, Strongylocentrotus intermedius. This enzyme, partially purified by DEAE-cellulose column, reversibly catalyzed the reaction of phosvitin phosphorylation. This indicates that the sea urchin embryos contain phosvitin kinase. Phosvitin kinase in sea urchin embryos is somewhat different from that found in the other types of cells, which are able to phosphorylate casein as well as phosvitin. In unfertilized eggs, the activity of this enzyme was found only in the supernatant fraction obtained by centrifuging the homogenate at 10,000g for 20 min. The activity in the embryos at the swimming and the mesenchyme blastula stage was higher than in unfertilized eggs, and was localized in the sedimentable fraction obtained by centrifuging the homogenate of the embryos at 10,000g for 20 min. The highest activity of phosvitin kinase was observed in the embryos at the mesenchyme blastula stage, and the enzyme activity became quite low at the late gastrula stage. The activity and the intracellular distribution of phosvitin kinase changed during the development. The enzyme in this sedimentable fraction was not solubilized with 1% Triton X-100 but was extracted by 1 M NaCl.  相似文献   

6.
Dihydrofolate reductase activity in fertilized eggs of the sea urchin, Hemicentrotus pulcherrimus, was almost the same as in unfertilized eggs. Aminopterin inhibited the enzyme competitively with dihydrofolate (FH2). The apparent Km value for FH2 in the dihydrofolate reductase reaction was about 0.1 μM in the crude homogenate of both unfertilized and fertilized eggs. Dihydrofolate reductase in the eggs was also inhibited by palmitoyl-CoA. The inhibition was canceled by polyamines, especially by spermine, but putrescine failed to prevent the enzyme from the inhibition. The change in long-chain acyl-CoA and polyamine concentrations during fertilization are discussed as possible regulatory factors of the enzyme.  相似文献   

7.
To determine the responsible components of isolated sperm centrioles for the aster induction in sea urchin eggs, the sperm centriolar fraction was treated with various enzymes and was injected into the unfertilized eggs, then the aster formation in first division was observed after fertilization.
Treatment with 1 μg/ml or higher concentration of trypsin inhibited the centriolar activity for aster induction, whereas the treatment with 50 μg/ml of DNase 1, 80 μg/ml of RNase A, 40 μg/ml of RNase T1, or 0.1 μg/ml of trypsin had no inhibitory effect to induce asters. Injection of 0.5 μg/ml of RNase A or 1 mUg/ml of RNase T1 into the egg caused the detention of mitosis at the streak stage. To examine the temperature effect for aster induction, the centriolar fraction was pre-treated with boiling temperature, and it was found that the fraction became incapable to induce any aster.
Results obtained suggest that the effective components of the sperm centriolar fraction to induce asters in the fertilized sea urchin eggs are the proteins but not the nucleic acids. The aster inducing activity is destroyed by heat treatment.  相似文献   

8.
Mitochondria isolated from sea urchin embryos in early development show almost the same activities of cytochrome c oxidase and flavin-linked complex enzymes, which are estimated by cytochrome c reductases as in those isolated from unfertilized eggs. The activities of these cytochrome c reductases are inhibited by Ca2+ at above 10-5 M more strongly than cytochrome c oxidase. To investigate the changes in intramitochondrial Ca2+ concentration at fertilization, the activity of pyruvate dehydrogenase, another mitochondrial enzyme, was measured. The activity of this enzyme was controlled by phosphorylation and Ca2+-dependent dephosphorylation of the catalytic unit. The enzyme activity increased for 30 min after fertilization, decreased and became close to zero within ~60 min. Then, the activity appreciably increased again after hatching. This seems to reflect changes in the intramitochondrial Ca2+ concentration. The enzyme activity was enhanced by pre-incubation with Ca2+ at concentrations up to 10-5 M but was made quite low at above 10-4 M Ca2+ and 10-3 M adenosine triphosphate. Although the changes in pyruvate dehydrogenase activity observed at fertilization will reflect the changes in the intramitochondrial calcium concentration, the intramitochondrial Ca2+ concentration of unfertilized eggs cannot be estimated from these results because high (> 10-4 M) or low (10-6 M) Ca2+ can inhibit the enzyme. Measurement of respiration of a single egg showed that injection of ethyleneglycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid released the mitochondrial electron transport in the unfertilized egg. The possibility that changes in intramitochondrial calcium concentration occur at fertilization is discussed in relation to activation of both mitochondrial respiration and pyruvate dehydrogenase.  相似文献   

9.
Intracellular free calcium concentration in the sea urchin egg was calculated to increase from 0.1 mM in an unfertilized egg to 1 mM in a fertilized egg 10 min after fertilization, based on measurement of the dissociation constant between free calcium and sea urchin egg homogenate. The dissociation constant between free calcium (dialyzable calcium) and homogenate of sea urchin eggs was measured by means of dialysis equilibrium. The dissociation constant of the unfertilized egg was about 10–4 M and that of the fertilized egg was about 10–3 M in three species of sea urchin, Hemicentrotus pulcherrimus, Anthocidaris crassispina, and Pseudocentrotus depressus. An increase in the dissociation constant of the unfertilized egg homogenate was observed after the addition of calcium ion at a concentration above 0.3 mM, the dissociation constant becoming the same as that observed in the fertilized egg homogenate after the administration of CaCl2 at a concentration above 1 mM. Sodium ion also caused a decrease in the calcium-binding ability of the unfertilized egg homogenate. Therefore, penetration of calcium ion or sodium ion upon fertilization might induce an increase in the dissociation constant and then intracellular concentration of free calcium would increase at fertilization. Almost all calcium-binding ability of the egg homogenate was found in the microsomal fraction, and the substance which bound calcium was thought to be protein in nature, since trypsin could decrease the level of calcium-binding substance in the homogenate of the eggs.  相似文献   

10.
Kinetics of in vivo phosphorylation of 3H-thymidine taken up by sea urchin eggs was compared between unfertilized and fertilized eggs. The percentage of phosphorylated 3H-thymidine in the total acid-soluble radioactivity in the cell increased with increasing incubation time within the first several minutes of incubation in the unfertilized eggs, while nearly 100% of phosphorylation of thymidine was observed without regards to the incubation time and in spite of a tremendous increase in the net uptake of thymidine in the fertilized eggs, suggesting possible activation of thymidine kinase occurring soon after fertilization.In contrast to the in vivo finding, the thymidine kinase activity in unfertilized egg homogenates was found in general to be almost as large as that in fertilized egg homogenates. However, when the enzyme activity was assayed within a short period (30 min) after homogenization of unfertilized eggs, the activity was found to increase more or less with time after homogenization, reaching a level equal to that in fertilized egg homogenates. This enzyme activation after homogenization was especially marked in case of Pseudocentrotus eggs and sometimes amounted to a several fold increase.Preliminary investigations revealed possible involvement of some redox reaction(s) in the thymidine kinase activation during and/or after homogenization of unfertilized sea urchin eggs.  相似文献   

11.
In sea urchin eggs, the activity of ornithine decarboxylase (ODC) [ E C 4.1.1.17] is detectable only in the particulate fraction yielded by centrifuging egg homogenates at 10,000g for 30 minutes. ODC activity in the particulate fraction isolated from fertilized eggs is higher than that from unferti-lized eggs. ODC activity in the particulate fraction isolated from either unfertilized or fertilized eggs is enhanced by adding the supernatant fraction obtained by centrifugation at 105,000g for two hours. Heating this supernatant at 70°C for 15 minutes results In complete loss of the stimulating capacity for ODC activity. Sea urchin eggs seem to contain heat labile activating substance(s) for ODC activity. The substance does not pass through the ultrafiltration membrane Diafro UM–10. Only eggs and unhatched embryos, in which mitosis occurs frequently, contain the activating substance. In the presence of the activating substance, Ca2+enhanced ODC activity.  相似文献   

12.
Unfertilized eggs of the sea urchin, Strongylocentrotus purpuratus, have a much lower capacity for glutamine synthesis than do fertilized eggs. This difference is not caused by an alteration of glutamine synthetase activity attendant upon fertilization. Neither the specific activity of glutamine synthetase nor its pattern of activation by divalent metal ions is affected by fertilization. The enzyme from both fertilized and unfertilized eggs is activated by α-ketoglutarate and inhibited by ultimate end products of glutamine metabolism. This type of regulation is similar to that seen with many other eucaryotic glutamine synthetases.Unfertilized eggs take up less glutamic acid than do fertilized eggs when the amino acid is presented at high concentrations (12.5 mM), whereas there is no difference in glutamic acid uptake at low concentrations (5 μM). Under conditions where glutamate uptake is identical, unfertilized eggs are dependent upon exogenous ammonia for glutamine synthesis in vivo; fertilized eggs are able to synthesize glutamine in the absence of added ammonia. Thus, our data suggest that the increased capacity for glutamine synthesis after fertilization is related to an increased availability of the substrate, ammonia.  相似文献   

13.
1. The hexokinase activity of homogenates of eggs and embryos of the sea urchin Arbacia punctulata has been measured. Expressed as micrograms glucose consumed at 20°C., per hour per milligram of protein the following values were obtained: unfertilized eggs, 67; fertilized eggs, 72; 24 hour plutei, 94; 48 hour plutei, 226. The concentration of the enzyme in the eggs is small and may be calculated to be about 0.001 per cent of the dry weight of unfertilized eggs. 2. The hexokinase activity of the egg homogenate was virtually all recovered in the supernatant fraction when the homogenate was centrifuged at 20,000 x g for 30 minutes and was found to have the following properties: The concentrations for half maximal hexokinase activity with various substrates were, approximately: Glucose, 0,00003 M; fructose, 0.00075; mannose, 0.00007; 2-desoxyglucose, 0.00025. The relative rates of phosphorylation of various sugars by the supernate fraction when saturated with substrate were, approximately: Glucose, 1.0; mannose, 1.2; fructose, 1.8; 2-desoxyglucose, 2.0; glucosamine, 0.6. Adenosinediphosphate and glucose-6-phosphate inhibited the enzyme. No evidence for more than one hexokinase in the Arbacia extracts was found.  相似文献   

14.
cAMP-dependent protein kinase was found in the sediment obtained by centrifuging a homogenate of sea urchin embryos at 10,000g for 20 min, and was solubilized with 1% Triton X-100. This enzyme was eluted at 0.16 M NaCl in a linear concentration gradient on a DEAE-cellulose column, at which cAMP-dependent protein kinase found in the supernatant was also eluted. The enzyme activity was enhanced about 1.5-fold in the presence of 1 μM cAMP, and increased somewhat by adding cGMP or cIMP. The activation by cAMP of protein kinase in the sedimentable fraction was lower than in the supernatant fraction. The properties of the enzyme found in the 10,000g sediment and in the supernatant differ somewhat. The activity of the cAMP-dependent protein kinase in the 10,000g sediment was high in the embryos at the blastula, the swimming blastula, and the mesenchyme blastula stages. On the other hand, the activity was undetectable in unfertilized eggs and in embryos at the morula, the gastrula, and the pluteus stages.  相似文献   

15.
A trypsin inhibitor, termed ovostatin, has been purified approximately 265-fold with 82% yield, from unfertilized eggs of the sea urchin Strongylocentrotus intermedius, using trypsin coupled Sepharose 4B as an affinity column for chromatography. The isolated ovostatin is homogeneous in sodium dodecyl sulfate/polyacrylamide gel electrophoresis, the estimated molecular weight being 20K–21.5K. Ovostatin inhibits preferentially trypsin-like endogenous protease purified from the eggs of the same species and bovine pancreatic trypsin and also bovine pancreatic chymotrypsin. Values of IC50 (amount causing 50% inhibition of enzymes) for trypsin-like protease purified from eggs of the same species, bovine pancreatic trypsin, and bovine pancreatic chymotrypsin, are 0.91 ± 0.13 μg/ml (4.55 ± 0.65 × 10?8 M), 3.0 ± 0.28 μg/ml (1.5 ± 0.14 × 10?7 M), and 4.8 ± 0.2 μg/ml (2.4 ± 0.1 × 10?7 M), respectively, in the experimental condition used. Kinetic studies indicate that ovostatin is a noncompetitive inhibitor of trypsin. The inhibitor is relatively heat labile. NaCl (0.025–0.01 M) enhances the inhibitor activity, whereas KCl is inhibitory. Ovostatin requires a low concentration of Ca2+ for activity. The activity is higher in unfertilized eggs than in fertilized eggs; total activity and specific activity in unfertilized eggs is about 1.67-fold and 1.85-fold higher than those in fertilized eggs, respectively. We believe that ovostatin may regulate the function of the cortical granule protease and other trypsin-like proteases that are activated in sea urchin eggs during fertilization.  相似文献   

16.
Cyclic adenosine monophosphate (CAMP) was measured in sea urchin eggs by the binding assay method of Gilman and with a radioimmune assay procedure. Intracellular concentrations of the nucleotide in unfertilized eggs were about 1.5 × 10−7 M and rose to about 3 times this value at first cleavage. Aminophylline, a known inhibitor of phosphodiesterase was shown to cause an increase in intracellular levels of CAMP by first cleavage and to inhibit phosphodiesterase activity in homogenates of both unfertilized and fertilized eggs. Puromycin and its purine component, 6-dimethylaminopurine (DMAP), did not cause an increase in intracellular CAMP levels and did not inhibit phosphodiesterase activity at concentrations an order of magnitude higher than those at which they inhibit cell division.  相似文献   

17.
Studies were made on which components of sperm were able to induce aster formation and cleavage of eggs of the sea urchin Hemicentrotus pulcherrimus. The sperm components were separated by homogenization and centrifugation into the following 3 fractions: the head-midpiece, midpiece and tail. The head-midpiece fraction was then divided into 2 sub-fractions, the centriole sub-fraction and the centriole-free sub-fractions. Each fraction was injected into unfertilized eggs and after 15–30 min the eggs were inseminated. The ability of a fraction or a sub-fraction to induce aster formation and cleavage was deduced from the frequency of multipolar cleavage. The head-midpiece fraction and the centriole sub-fraction were effective in inducing aster formation and cleavage, but the other fractions were not. It was concluded that isolated centrioles from sea urchin sperm act as division centers in the egg.  相似文献   

18.
19.
Binding of insulin to sea urchin egg plasma membrane has been studied by biochemical and immunocytochemical methods. Unfertilized and fertilized eggs as well as embryos during the first cell division have been used.
  • 1. 

    Competition experiments between 125I-insulin (1 nM) and an excess of native insulin (30 μM) indicate a specific hormone fixation to membrane crude extracts from unfertilized and fertilized eggs. The magnitude of "specific binding'is comparable to values recorded for mammalian cells.

  • 2. 

    Inhibition of insulin fixation by concanavalin A (100 μg/ml) suggests the glycoprotein composition of plasma membrane receptors.

  • 3. 

    A 30-min incubation of unfertilized and fertilized eggs in the presence of insulin leads to a significant increase in cyclic AMP content.

  • 4. 

    An immunocytochemical method demonstrates that insulin is selectively and specifically bound to the plasma membrane of eggs incubated in the presence of insulin before fixation.


It can be concluded that insulin receptor sites are components of sea urchin eggs plasma membrane. Insulin binding which leads to cyclic AMP accumulation is not deeply modified by fertilization and does not induce visible morphological changes in the eggs.  相似文献   

20.
The nuclei from fertilized sea urchin eggs, obtained 80 min after fertilization, contains a neutral proteolytic activity. Optimal action on casein was observed at pH 7-8 and a Km value of 1.2 mg/ml was determined for this substrate. The proteolytic activity was stimulated 1.5 fold by the addition of 3 M urea and decreased at higher urea concentrations. NaCl and CaCl2 were inhibitory whereas MgCl2 increased the enzyme activity. Isolated histones from sea urchin sperms, and especially histones H1, H2A, H2B and H3, were degraded by the nuclear activity. A partial inhibition of histones degradation was caused by sodium bisulfite and NaCl. The proteolytic activity was found associated to the chromatin of fertilized sea urchin eggs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号