首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome c (Cc) and cytochrome c peroxidase (CcP) form a physiological complex in the inter-membrane space of yeast mitochondria, where CcP reduces hydrogen peroxide to water using the electrons provided by ferrous Cc. The Cc-CcP system has been a popular choice of study of interprotein biological electron transfer (ET) and in understanding dynamics within a protein-protein complex. In this review we have charted seven decades of research beginning with the discovery of CcP and leading to the latest functional and structural work, which has clarified the mechanism of the intermolecular ET, addressed the putative functional role of a low-affinity binding site, and identified lowly-populated intermediates on the energy landscape of complex formation. Despite the remarkable attention bestowed on this complex, a number of outstanding issues remain to be settled on the way to a complete understanding of Cc-CcP interaction.  相似文献   

2.
Academic physiology, as it was taught by John Hughes Bennett during the 1870s, involved an understanding of the functions of the human body and the physical laws which governed those functions. This knowledge was perceived to be directly relevant and applicable to clinical practice in terms of maintaining bodily hygiene and human health. The first generation of medical women received their physiological education at Edinburgh University under Bennett, who emphasised the importance of physiology for women due to its relevance for the hygienic needs of the family and of society. With the development of laboratory-based science as a distinct aspect of medical education during the later nineteenth century, however, so the direct application of physiology to clinical practice diminished. The understanding of physiology as hygiene was marginalised by the new orthodoxy of scientific medicine. This shift in the physiological paradigm enabled medical women to stake out a specific field of interest within medicine which was omitted from the new definition of physiology as pure medical science: hygiene and preventive medicine. Women physicians were able to take advantage of the shift towards science as the basis of medical theory and practice to define their own specific role within the profession.  相似文献   

3.
The interaction of cytochrome c with ubiquinol-cytochrome c oxidoreductase (bc1 complex) has been studied for >30 years, yet many aspects remain unclear or controversial. We report the first molecular dynamic simulations of the cyt c-bc1 complex interaction. Contrary to the results of crystallographic studies, our results show that there are multiple dynamic hydrogen bonds and salt bridges in the cyt c-c1 interface. These include most of the basic cyt c residues previously implicated in chemical modification studies. We suggest that the static nature of x-ray structures can obscure the quantitative significance of electrostatic interactions between highly mobile residues. This provides a clear resolution of the discrepancy between the structural data and functional studies. It also suggests a general need to consider dynamic interactions of charged residues in protein-protein interfaces. In addition, a novel structural change in cyt c is reported, involving residues 21-25, which may be responsible for cyt c destabilization upon binding. We also propose a mechanism of interaction between cyt c1 monomers responsible for limiting the binding of cyt c to only one molecule per bc1 dimer by altering the affinity of the cytochrome c binding site on the second cyt c1 monomer.  相似文献   

4.
Wegerich et al. (J. Biol. Inorg. Chem. 18:429–440, 2013), working with singly modified human cytochromes c, claim to have found a new mechanism for the reduction of iron(III) cytochrome c by superoxide. I show that electron transfer by way of the solvent-accessible haem edge—a mechanism not considered by Wegerich et al.—is still the correct mechanism. Furthermore, several deficiencies in this work preclude any comparisons with other publications on this topic.  相似文献   

5.
6.
A triad of tyrosine residues (Y152–154) in the cytochrome c1 subunit (C1) of the Rhodobacter capsulatus cytochrome bc1 complex (BC1) is ideally positioned to interact with cytochrome c2 (C2). Mutational analysis of these three tyrosines showed that, of the three, Y154 is the most important, since its mutation to alanine resulted in significantly reduced levels, destabilization, and inactivation of BC1. A second-site revertant of this mutant that regained photosynthetic capacity was found to have acquired two further mutations—A181T and A200V. The Y152Q mutation did not change the spectral or electrochemical properties of C1, and showed wild-type enzymatic C2 reduction rates, indicating that this mutation did not introduce major structural changes in C1 nor affect overall activity. Mutations Y153Q and Y153A, on the other hand, clearly affect the redox properties of C1 (e.g. by lowering the midpoint potential as much as 117 mV in Y153Q) and the activity by 90% and 50%, respectively. A more conservative Y153F mutant on the other hand, behaves similarly to wild-type. This underscores the importance of an aromatic residue at position Y153, presumably to maintain close packing with P184, which modeling indicates is likely to stabilize the sixth heme ligand conformation.  相似文献   

7.
A new method of preparing and purifying the haem undecapeptide of cytochrome c is reported. The Mössbauer spectra of solid samples, lyophilized at pH 7 from water, show mainly the presence of low-spin ferric iron, in contrast with earlier reports. No evidence of temperature dependent spin-spin equilibria was observed. A small proportion of the haem (~ 15%) inhabits an environment distinctly different from that of the majority. These observations are discussed.  相似文献   

8.
Inhibition of porcine pancreas and human saliva α-amylase (EC 3.2.1.1) by sanguinarine and chelerythrine was studied. The inhibition of α-amylase was assayed using a biosensor method which utilises a flow system equipped with a peroxide electrode. 250?μM sanguinarine and 250?μM chelerythrine cause complete inhibition of 1.9?nkat α-amylase from porcine pancreas. The same concentration of sanguinarine and chelerythrine caused 23.9% and 7.5% inhibition, respectively, of 1.9?nkat α-amylase from human saliva. Mixed type and partially reversible inhibition was found for both α-amylases treated with either alkaloid.  相似文献   

9.
Paracoccus denitrificans strains with mutations in the genes encoding the cytochrome c(550), c(552), or c(1) and in combinations of these genes were constructed, and their growth characteristics were determined. Each mutant was able to grow heterotrophically with succinate as the carbon and free-energy source, although their specific growth rates and maximum cell numbers fell variably behind those of the wild type. Maximum cell numbers and rates of growth were also reduced when these strains were grown with methylamine as the sole free-energy source, with the triple cytochrome c mutant failing to grow on this substrate. Under anaerobic conditions in the presence of nitrate, none of the mutant strains lacking the cytochrome bc(1) complex reduced nitrite, which is cytotoxic and accumulated in the medium. The cytochrome c(550)-deficient mutant did denitrify provided copper was present. The cytochrome c(552) mutation had no apparent effect on the denitrifying potential of the mutant cells. The studies show that the cytochromes c have multiple tasks in electron transfer. The cytochrome bc(1) complex is the electron acceptor of the Q-pool and of amicyanin. It is also the electron donor to cytochromes c(550) and c(552) and to the cbb(3)-type oxidase. Cytochrome c(552) is an electron acceptor both of the cytochrome bc(1) complex and of amicyanin, as well as a dedicated electron donor to the aa(3)-type oxidase. Cytochrome c(550) can accept electrons from the cytochrome bc(1) complex and from amicyanin, whereas it is also the electron donor to both cytochrome c oxidases and to at least the nitrite reductase during denitrification. Deletion of the c-type cytochromes also affected the concentrations of remaining cytochromes c, suggesting that the organism is plastic in that it adjusts its infrastructure in response to signals derived from changed electron transfer routes.  相似文献   

10.
11.
12.
The temperature dependence of the mean square displacement of the iron atom in reduced and oxidized cytochrome c has been studied by Mössbauer spectroscopy. The flexibility of the protein, labeled by the modes coupling to the iron, is diminished upon reduction. The differences in flexibility are sufficient to explain the differences in physicochemical properties between the oxidized and the reduced forms.  相似文献   

13.
We have carried out a systematic investigation of salts- and alcohols-induced conformational alterations on the trifluoroacetic acid (TFA)-treated ferricytochrome c by soret absorption spectroscopy, far UV circular dichroism (CD), tryptophan fluorescence, and 1-anilino-8-naphthalene sulfonate (ANS) binding. TFA induces the unfolding of native cytochrome c obtained from horse heart leading to loss of secondary structure. The addition of increasing concentration of salts and alcohols leads to increase in MRE value at 222 and 208 nm indicating an increase in the alpha-helical content leading to formation of compact dimensional structure. Cytochrome c is a heme protein in which the resonance energy of tryptophan is transferred to heme resulting in quenched tryptophan fluorescence. Addition of alcohols leads to increase in tryptophan and ANS fluorescence. The tryptophan and ANS fluorescence in case of salts shows decreased fluorescence intensity. TFA-induced unfolded cytochrome c showed the soret absorption maximum at 394 nm. However, an intermediate state in presence of alcohols and salts showed the absorption maxima at 398 nm and 402 nm, respectively. Among all the salts and alcohols studied, K3Fe(CN)6 and butanol were found to be most effective as examined by the above-mentioned spectroscopic techniques. The order of effectiveness of alcohols was found to be butanol > propanol > ethanol > methanol. The following effective trend in the case of salts was obtained: K3Fe(CN)6 > K2SO4>KClO4 > KCl. These results suggest that alcohols induce an intermediate with molten globule-like conformation on the TFA unfolded state, whereas salts induce a refolded intermediate approaching native-like conformation.  相似文献   

14.
Allen JW 《The FEBS journal》2011,278(22):4198-4216
In c-type cytochromes, heme becomes covalently attached to the polypeptide chain by a reaction between the vinyl groups of the heme and cysteine thiols from the protein. There are two such cytochromes in mitochondria: cytochrome c and cytochrome c(1). The heme attachment is a post-translational modification that is catalysed by different biogenesis proteins in different organisms. Three types of biogenesis system are found or predicted in mitochondria: System I (the cytochrome c maturation system); System III (termed holocytochrome c synthase (HCCS) or heme lyase); and System V. This review focuses primarily on cytochrome c maturation in mitochondria containing HCCS (System III). It describes what is known about the enzymology and substrate specificity of HCCS; the role of HCCS in human disease; import of HCCS into mitochondria; import of apocytochromes c and c(1) into mitochondria and the close relationships with HCCS-dependent heme attachment; and the role of the fungal cytochrome c biogenesis accessory protein Cyc2. System V is also discussed; this is the postulated mitochondrial cytochrome c biogenesis system of trypanosomes and related organisms. No cytochrome c biogenesis proteins have been identified in the genomes of these organisms whose c-type cytochromes also have a unique mode of heme attachment.  相似文献   

15.
It has already been shown that the mutant Leu94Gly of horse cytochrome c exists in a molten globule (MG) state. We have carried out studies of reversible folding and unfolding induced by LiCl of this mutant at pH 6.0 and 25 °C by observing changes in the difference molar absorption coefficient at 402 nm, the mean residue ellipticity at 222 nm, and the difference mean residue ellipticity at 409 nm. This process is a three-state process when measured by these probes. The stable folding intermediate state has been characterized by far- and near-UV circular dichroism, tryptophan fluorescence, 8-anilino-1-naphthalenesulfonic acid binding, and dynamic light scattering measurements, which led us to conclude that the intermediate is a premolten globule (PMG). Analysis of the reversible unfolding transition curves for the stability of different states in terms of the Gibbs free energy change at pH 6.0 and 25 °C led us to conclude that the MG state is more stable than the PMG state by 5.4 ± 0.1 kcal mol−1, whereas the PMG state is more stable than the denatured (D) state by only 1.1 ± 0.1 kcal mol−1. A comparison of the conformational and thermodynamic properties of the LiCl-induced PMG state at pH 6.0 with those of the PMG state induced by NaCl at pH 2.0 suggests that a similar PMG state is obtained under both denaturing conditions. Differential scanning calorimetry measurements suggest that heat induces a reversible two-state transition between MG and D states.  相似文献   

16.
17.
We determined the stability diagram of a modified cytochrome c protein in a glycerol water mixture by measuring the first and the second moment of the fluorescence from the chromophore as a function of temperature and pressure. Temperature and pressure were varied between 273 and 363 K and 0.0001 and 1 GPa, respectively. The shift of the fluorescence maximum showed a characteristic sigmoid-like pattern from which information on the microscopic processes during unfolding is obtained: as the transformation regime is entered, the fluorescence shows a significant blue shift. The conclusion is that water molecules get into contact with the chromophore. They lead to strong electrostatic contributions in the solvent shift, which counteract the red shifting dispersion interactions. Assuming that there are just two relevant states that determine the stability diagram, the complete set of thermodynamic parameters can be determined from the data. However, under certain pressure-temperature conditions the fluorescence pattern is more complicated, pointing toward reentrant transitions and, possibly, to consecutive steps in the unfolding process.  相似文献   

18.
A combined DFT/electrostatic approach is employed to study the coupling of proton and electron transfer reactions in cytochrome c oxidase (CcO) and its proton pumping mechanism. The coupling of the chemical proton to the internal electron transfer within the binuclear center is examined for the O→E transition. The novel features of the His291 pumping model are proposed, which involve timely well-synchronized sequence of the proton-coupled electron transfer reactions. The obtained pK(a)s and E(m)s of the key ionizable and redox-active groups at the different stages of the O→E transition are consistent with available experimental data. The PT step from E242 to H291 is examined in detail for various redox states of the hemes and various conformations of E242 side-chain. Redox potential calculations of the successive steps in the reaction cycle during the O→E transition are able to explain a cascade of equilibria between the different intermediate states and electron redistribution between the metal centers during the course of the catalytic activity. All four electrometric phases are discussed in the light of the obtained results, providing a robust support for the His291 model of proton pumping in CcO.  相似文献   

19.
20.
The stages of the early Neolithic and the spread of agriculture in northern Italy are difficult to determine and basically still unclear, since this region was influenced by deeply different cultures coming from both the Mediterranean coasts and the Balkans. The complex interrelations due to the contributions from both cultures are reinterpreted here thanks to recent data, modifying a picture which 15 years ago was believed to be definite. According to radiocarbon chronology, the appearance of the earliest farming communities in northern Italy should be dated around 5600–5500 cal b.c. Early farmers cultivated several cereal and pulse taxa, of which the more important were Hordeum vulgare/distichum, Triticum dicoccum, T. monococcum, T. aestivum/durum/turgidum, Lens culinaris and Pisum sp. In addition they gathered many wild plants. The spread of agriculture was a rapid phenomenon and within a few centuries agriculture was established into the Alps. Little is known about the middle and late Neolithic, with the Square-mouthed pottery culture “Bocca Quadrata”, from c. 5100 cal b.c. onwards, since most of the archaeological features discovered up to the present have produced only a few plant remains. We demonstrate the introduction of poppy and a few other innovations like a slightly increased cultivation of free-threshing cereals and flax. Archaeobotanical analyses from Chalcolithic or Copper Age settlements, from c. 3500 cal b.c. onwards, are even scarcer and a comparison with the earlier Neolithic settlements does not yet seem possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号