首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary: Anaerobic ammonium-oxidizing (anammox) bacteria defy many microbiological concepts and share numerous properties with both eukaryotes and archaea. Among their most intriguing characteristics are their compartmentalized cell plan and archaeon-like cell wall. Here we review our current knowledge about anammox cell biology. The anammox cell is divided into three separate compartments by bilayer membranes. The anammox cell consists of (from outside to inside) the cell wall, paryphoplasm, riboplasm, and anammoxosome. Not much is known about the composition or function of both the anammox cell wall and the paryphoplasm compartment. The cell wall is proposed to be proteinaceous and to lack both peptidoglycan and an outer membrane typical of Gram-negative bacteria. The function of the paryphoplasm is unknown, but it contains the cell division ring. The riboplasm resembles the standard cytoplasmic compartment of other bacteria; it contains ribosomes and the nucleoid. The anammoxosome occupies most of the cell volume and is a so-called “prokaryotic organelle” analogous to the eukaryotic mitochondrion. This is the site where the anammox reaction takes place, coupled over the curved anammoxosome membrane, possibly giving rise to a proton motive force and subsequent ATP synthesis. With these unique properties, anammox bacteria are food for thought concerning the early evolution of the domains Bacteria, Archaea, and Eukarya.  相似文献   

3.
Anaerobic ammonium oxidizing (anammox) bacteria oxidize ammonium with nitrite to nitrogen gas in the absence of oxygen. These microorganisms form a significant sink for fixed nitrogen in the oceans and the anammox process is applied as a cost‐effective and environment‐friendly nitrogen removal system from wastewater. Anammox bacteria have a compartmentalized cell plan that consists of three separate compartments. Here we report the fractionation of the anammox bacterium Kuenenia stuttgartiensis in order to isolate and analyze the innermost cell compartment called the anammoxosome. The subcellular fractions were microscopically characterized and all membranes in the anammox cell were shown to contain ladderane lipids which are unique for anammox bacteria. Proteome analyses and activity assays with the isolated anammoxosomes showed that these organelles harbor the energy metabolism in anammox cells. Together the experimental data provide the first thorough characterization of a respiratory cell organelle from a bacterium and demonstrate the essential role of the anammoxosome in the production of a major portion of the nitrogen gas in our atmosphere.  相似文献   

4.
Nitric oxide is an important molecule in all domains of life with significant biological functions in both pro- and eukaryotes. Anaerobic ammonium-oxidizing (anammox) bacteria that contribute substantially to the release of fixed nitrogen into the atmosphere use the oxidizing power of NO to activate inert ammonium into hydrazine (N2H4). Here, we describe an enzyme from the anammox bacterium Kuenenia stuttgartiensis that uses a novel pathway to make NO from hydroxylamine. This new enzyme is related to octaheme hydroxylamine oxidoreductase, a key protein in aerobic ammonium-oxidizing bacteria. By a multiphasic approach including the determination of the crystal structure of the K. stuttgartiensis enzyme at 1.8 Å resolution and refinement and reassessment of the hydroxylamine oxidoreductase structure from Nitrosomonas europaea, both in the presence and absence of their substrates, we propose a model for NO formation by the K. stuttgartiensis enzyme. Our results expand the understanding of the functions that the widespread family of octaheme proteins have.  相似文献   

5.
The transmembrane proton electrochemical potential gradient ΔμH+ in whole cells of Anacystis nidulans was measured in aerobic and anaerobic dark conditions using the distribution, between external medium and cell interior, of radioactively labeled weak acids (acetylsalicyclic acid, 5,5-dimethyloxazolidine-2,4-dione) or bases (imidazole, methylamine), and permeant ions (tetraphenylphosphonium cation, thiocyanate anion), as determined by flow dialysis. Alternatively, the movements across the plasma membrane of ΔpH-indicating atebrin or 9-aminoacridine, and of ΔΨ-indicating 8-anilino-l-naphthalenesulfonate were qualitatively followed by fluorescence measurements. Attempts were made to discriminate between the individual chemiosmotic gradients across the cytoplasmic (plasmalemma) and the intracytoplasmic (thylakoid) membranes. By use of the ionophores nigericin, monensin, and valinomycin, the components of the proton motive force, namely the proton concentration gradient ΔpH and the electric membrane potential ΔΨ were shown to be mutually exchangeable within the range of external pH values tested (3.2-11.0). Both components were depressed by the uncoupler carbonylcyanide m-chlorophenylhydrazone, though inhibition of ΔpH was much more pronounced than that of ΔΨ, notably in the alkaline pH0 range. The total proton electrochemical gradient across the plasma membrane was significantly higher in aerobic than in anaerobic cells and increased markedly (i.e. became more negative) towards lower pH0 values. This increase was paralleled by a similar increase in the rate of endogenous respiration of the cells. At the same time the ATPase inhibitor dicyclohexylcarbodiimide only slightly affected the proton motive force across the plasma membrane of aerobic cells. The results will be discussed in terms of a respiratorily competent plasma membrane in Anacystis nidulans.  相似文献   

6.
In order to further investigate the mechanisms regulating the control of mitochondrial respiration by thyroid hormone, the proton motive force was measured during State IV respiration in liver mitochondria isolated from euthyroid, hyperthyroid, hypothyroid and T3-treated hypothyroid rats. The proton motive force was significantly higher in the hyperthyroid group due to an increased pH. The proton motive force of hypothyroid mitochondria was lower than controls due to a decreased membrane potential. The proton motive force for the T3-treated hypothyroid group did not differ from the euthyroid group due to negating changes in the pH gradient and the membrane potential. The intramitochondrial volume was decreased in the hyperthyroid group and unchanged in the other groups. The results indicate that the thyroid status alters the proton motive force in State IV through individual changes in the pH and membrane potential components of the force. The component that changes in hyperthyroid mitochondria is different from that changing in hypothyroid mitochondria.  相似文献   

7.
Planctomycetes are a bacterial phylum known for their complex intracellular compartmentalization. While most Planctomycetes have two compartments, the anaerobic ammonium oxidizing (anammox) bacteria contain three membrane-enclosed compartments. In contrast to a long-standing consensus, recent insights suggested the outermost Planctomycete membrane to be similar to a Gram-negative outer membrane (OM). One characteristic component that differentiates OMs from cytoplasmic membranes (CMs) is the presence of outer membrane proteins (OMPs) featuring a β-barrel structure that facilitates passage of molecules through the OM. Although proteomic and genomic evidence suggested the presence of OMPs in several Planctomycetes, no experimental verification existed of the pore-forming function and localization of these proteins in the outermost membrane of these exceptional microorganisms. Here, we show via lipid bilayer assays that at least two typical OMP-like channel-forming proteins are present in membrane preparations of the anammox bacterium Kuenenia stuttgartiensis. One of these channel-forming proteins, the highly abundant putative OMP Kustd1878, was purified to homogeneity. Analysis of the channel characteristics via lipid bilayer assays showed that Kustd1878 forms a moderately cation-selective channel with a high current noise and an average single-channel conductance of about 170–190 pS in 1 M KCl. Antibodies were raised against the purified protein and immunogold localization indicated Kustd1878 to be present in the outermost membrane. Therefore, this work clearly demonstrates the presence of OMPs in anammox Planctomycetes and thus firmly adds to the emerging view that Planctomycetes have a Gram-negative cell envelope.  相似文献   

8.
Anaerobic ammonium-oxidizing (anammox) bacteria mediate a key step in the biogeochemical nitrogen cycle and have been applied worldwide for the energy-efficient removal of nitrogen from wastewater. However, outside their core energy metabolism, little is known about the metabolic networks driving anammox bacterial anabolism and use of different carbon and energy substrates beyond genome-based predictions. Here, we experimentally resolved the central carbon metabolism of the anammox bacterium Candidatus ‘Kuenenia stuttgartiensis’ using time-series 13C and 2H isotope tracing, metabolomics, and isotopically nonstationary metabolic flux analysis. Our findings confirm predicted metabolic pathways used for CO2 fixation, central metabolism, and amino acid biosynthesis in K. stuttgartiensis, and reveal several instances where genomic predictions are not supported by in vivo metabolic fluxes. This includes the use of the oxidative branch of an incomplete tricarboxylic acid cycle for alpha-ketoglutarate biosynthesis, despite the genome not having an annotated citrate synthase. We also demonstrate that K. stuttgartiensis is able to directly assimilate extracellular formate via the Wood–Ljungdahl pathway instead of oxidizing it completely to CO2 followed by reassimilation. In contrast, our data suggest that K. stuttgartiensis is not capable of using acetate as a carbon or energy source in situ and that acetate oxidation occurred via the metabolic activity of a low-abundance microorganism in the bioreactor’s side population. Together, these findings provide a foundation for understanding the carbon metabolism of anammox bacteria at a systems-level and will inform future studies aimed at elucidating factors governing their function and niche differentiation in natural and engineered ecosystems.Subject terms: Environmental microbiology, Metabolism  相似文献   

9.
Biochemistry and molecular biology of anammox bacteria   总被引:1,自引:0,他引:1  
Anaerobic ammonium-oxidizing (anammox) bacteria are one of the latest additions to the biogeochemical nitrogen cycle. These bacteria derive their energy for growth from the conversion of ammonium and nitrite into dinitrogen gas in the complete absence of oxygen. These slowly growing microorganisms belong to the order Brocadiales and are affiliated to the Planctomycetes. Anammox bacteria are characterized by a compartmentalized cell architecture featuring a central cell compartment, the “anammoxosome”. Thus far unique “ladderane” lipid molecules have been identified as part of their membrane systems surrounding the different cellular compartments. Nitrogen formation seems to involve the intermediary formation of hydrazine, a very reactive and toxic compound. The genome of the anammox bacterium Kuenenia stuttgartiensis was assembled from a complex microbial community grown in a sequencing batch reactor (74% enriched in this bacterium) using a metagenomics approach. The assembled genome allowed the in silico reconstruction of the anammox metabolism and identification of genes most likely involved in the process. The present anammox pathway is the only one consistent with the available experimental data, thermodynamically and biochemically feasible, and consistent with Ockham’s razor: it invokes minimum biochemical novelty and requires the fewest number of biochemical reactions. The worldwide presence of anammox bacteria has now been established in many oxygen-limited marine and freshwater systems, including oceans, seas, estuaries, marshes, rivers and large lakes. In the marine environment over 50% of the N2 gas released may be produced by anammox bacteria. Application of the anammox process offers an attractive alternative to current wastewater treatment systems for the removal of ammonia-nitrogen. Currently, at least five full scale reactor systems are operational.  相似文献   

10.
1H NMR spectra of low-spin cyanide-ligated bacterial hemoglobin fromVitreoscilla (VtHb-CN) are reported. The assignments of the1H NMR spectra of VtHb-CN have been made through MCOSY, NOESY, 1D TOE and SUPERWEFT experiments. Almost all resonance peaks of heme and ligated His85 are identified. The spin-lattice relaxation timeT 1’s and the variation relationships of chemical shifts of these peaks with temperature have been acquired, from which the distances between the measured protons and Fe3+, and the diamagnetic chemical shifts have been acquired, respectively. The ionization constants of pK a’s of ligated His85 are determined through pH titration of chemical shift, which is 4.95 for ligated His85 C2H proton. The lower pK a is attributed to the influence of the Fe3+ of carrying positive charge and the coordination of His85 and Fe3+ of heme.  相似文献   

11.
Dunlop, J., Knighton, M. V. and White, D. W. R. 1988. Ion transportand the effects of acetic acid in white clover. I. Phosphateabsorption.—J. exp. Bot. 39: 79–88. The effect of acetic acid on phosphate absorption by white clovertissue has been examined. At 1·0 mol m3 acetic acid phosphateabsorption by roots of intact plants was stimulated by 36% (P< 0.001). At 5.0 and 10 mol m–3 acetic acid there wasmarked inhibition of absorption by both suspension culturesof cells and the roots of intact plants. The inhibition waspH dependent with decreasing pH causing increased inhibition.Acetic acid caused changes in the membrane electropotential(E) with concentrations of 2·0 mol m–3 or lesscausing persistent polarization whereas at 5·0 mol m–3and higher concentrations the polarization was followed by agreater depolarization. Intracellular pH as measured by thefluorescence of fluorescein was lowered by acetic acid. Calculationsindicate that for white clover roots the proton motive force(pmf) appears to provide sufficient energy for phosphate absorption.It is proposed that acetic acid influences phosphate absorptionthrough its dependence on proton cotransport and that changesin J E affect the rate of phosphate absorption because of thedependence of the pmf on E. Key words: Phosphate absorption, intracellular pH, acetic acid, proton motive force, Trifolium repens, membrane electropotential  相似文献   

12.
In the aquatic liverwort Riccia fluitans the regulation of theplasma membrane H+/amino acid symport has been investigated.Cytosolic pH (pHc), membrane potential (Em) and membrane conductancehave been measured and related to transport data, (i) The releaseof [14C]amino acids is strongly stimulated by cytosolic acidification,induced by the external addition of acetic acid, a decreasein external K+, and in the change from light to dark. On average,a decrease in pHc of 0.5 to 0.6 units corresponded with a 4-foldstimulation in amino acid efflux. (ii) External pH changes havefar less effect on substrate transport than the cytosolic pHshifts of the same order. (iii) The inwardly directed positivecurrent, induced by amino acids, is severely inhibited by cytosolicacidification. (iv) Fusicoccin (FC) stimulates amino acid uptakewithout considerable change in proton motive force. (v) Whenthe proton motive force is kept constant, the uptake of aminoacids into Riccia thalli is much lower than when the pump isdeactivated. It is suggested that both the proton pump activityand cytosolic pH are the dominant factors in the regulationof the H+/amino acid symport across the plasma membrane of Ricciafluitans, and it is concluded that the proton motive force isnot a reliable quantity to predict and interpret transport kinetics. Key words: Amino acid, cytosolic pH, pH-sensitive electrode, proton motive force, regulation, Riccia fluitans  相似文献   

13.
In order to examine the mediatory role of proton motive force (∆p) or proton ATPase in H2 production by Rhodobacter sphaeroides, ∆p was determined under anaerobic conditions in the dark, and the ATPase activity has been studied in R. sphaeroides strain A-10, isolated from Arzni mineral springs in Armenia. Membrane potential (∆φ) was measured from the distribution of tetraphenylphosphonium cation; pH gradient (∆pH) was the difference between the external and cytoplasmic pH values, and the latter was measured by 9-aminoacridine (9-AA) fluorescence changes. At pH 7.5, ∆φ was of −94 mV and the reversed ∆pH was +30 mV, resulting in ∆p of −64 mV. The addition of N,N′-dicyclohexylcarbodiimide (DCCD), the F0F1–ATPase inhibitor, was not affect ∆φ. It was shown that ∆φ varies nearly linearly with ΔpH, ∆φ increased from −57.1 mV at pH 6.0 to −103.8 mV at pH 8.0; it was compensated at high external pH by a reversed ∆pH, resulting in a low ∆p under anaerobic-dark conditions. Intracellular ATP concentrations and energetic charge (EC) were measured to evaluate a metabolism activity of R. sphaeroides.  相似文献   

14.
Summary The rate of inorganic carbon uptake and its steadystate accumulation ratio (intracellular/extracellular concentration) was determined in the cyanobacteriumAnabaena variabilis as a function of extracellular pH. The free energy of protons ( ) across the plasmalemma was calculated from determinations of membrane potential, and intracellular pH, as a function of the extracellular pH. While inward proton motive force decreased with increasing extracellular pH from 6.5 to 9.5, rate of HCO 3 influx and its accumulation ration increased. The latter is several times larger than would be expected should HCO 3 influx be driven by . It is concluded that HCO 3 transport in cyanobacteria is not driven by the proton motive force.  相似文献   

15.
Lactobacillus casei CRL705 produces a class IIb bacteriocin, lactocin 705, which relies on the complementary action of two components, Lac705α and Lac705β. These peptides exert a bactericidal effect on the indicator strain Lactobacillus plantarum CRL691, with an optimal Lac705α/Lac705β peptide ratio of 1 to 4. Electron microscopy studies showed that treated CRL691 cells have their cell wall severely damaged, with mesosome-like membranous formations protruding into their cytoplasm. Although less pronounced, a similar effect was also observed with the Lac705β peptide alone. Furthermore, Lac705β increased the inhibitory action of a diluted supernatant of L. casei CRL705, while Lac705α protected CRL691 cells from inhibition. Both peptides were required to dissipate the proton motive force (Δψ and ΔpH) of CRL691 cells. These data suggested that of the two components of lactocin 705, the Lac705α peptide is responsible for receptor recognition, and the Lac705β peptide is the active component on the cell membrane of CRL691 cells. Received: 12 April 2002 / Accepted: 24 May 2002  相似文献   

16.
In vivo studies with leaf cells of aquatic plant species such as Elodea nuttallii revealed the proton permeability and conductance of the plasma membrane to be strongly pH dependent. The question was posed if similar pH dependent permeability changes also occur in isolated plasma membrane vesicles. Here we report the use of acridine orange to quantify passive proton fluxes. Right-side out vesicles were exposed to pH jumps. From the decay of the applied ΔpH the proton fluxes and proton permeability coefficients (PH+) were calculated. As in the intact Elodea plasma membrane, the proton permeability of the vesicle membrane is pH sensitive, an effect of internal pH as well as external pH on PH+ was observed. Under near symmetric conditions, i.e., zero electrical potential and zero ΔpH, PH+ increased from 65 × 10−8 at pH 8.5 to 10−1 m/sec at pH 11 and the conductance from 13 × 10−6 to 30 × 10−4 S/m2. At a constant pH i of 8 and a pH o going from 8.5 to 11, PH+ increased more than tenfold from 2 to 26 × 10−6 m/sec. The calculated values of PH+ were several orders of magnitude lower than those obtained from studies on intact leaves. Apparently, in plasma membrane purified vesicles the transport system responsible for the observed high proton permeability in vivo is either (partly) inactive or lost during the procedure of vesicle preparation. The residue proton permeability is in agreement with values found for liposome or planar lipid bilayer membranes, suggesting that it reflects an intrinsic permeability of the phospholipid bilayer to protons. Possible implications of these findings for transport studies on similar vesicle systems are discussed. Received: 5 April 1995/Revised: 28 March 1996  相似文献   

17.
Recently, two fresh water species, "Candidatus Brocadia anammoxidans" and "Candidatus Kuenenia stuttgartiensis", and one marine species, "Candidatus Scalindua sorokinii", of planctomycete anammox bacteria have been identified. "Candidatus Scalindua sorokinii" was discovered in the Black Sea, and contributed substantially to the loss of fixed nitrogen. All three species contain a unique organelle—the anammoxosome—in their cytoplasm. The anammoxosome contains the hydrazine/hydroxylamine oxidoreductase enzyme, and is thus the site of anammox catabolism. The anammoxosome is surrounded by a very dense membrane composed almost exclusively of linearly concatenated cyclobutane-containing lipids. These so-called 'ladderanes' are connected to the glycerol moiety via both ester and ether bonds. In natural and man-made ecosystems, anammox bacteria can cooperate with aerobic ammonium-oxidising bacteria, which protect them from harmful oxygen, and provide the necessary nitrite. The cooperation of these two groups of ammonium-oxidising bacteria is the microbial basis for a sustainable one reactor system, CANON (completely autotrophic nitrogen-removal over nitrite) to remove ammonia from high strength wastewater.  相似文献   

18.
Vascular plants use two pathways to synthesize galactolipids, the predominant lipid species in chloroplasts—a prokaryotic pathway that resides entirely in the chloroplast, and a eukaryotic pathway that involves assembly in the endoplasmic reticulum. Mutants deficient in the endoplasmic reticulum pathway, trigalactosyldiacylglycerol (tgd1-1 and tgd2-1) mutants, had been previously identified with reduced contents of monogalactosyldiacylglycerol and digalactosyldiacylglycerol, and altered lipid molecular species composition. Here, we report that the altered lipid composition affected photosynthesis in lipid trafficking mutants. It was found that proton motive force as measured by electrochromic shift was reduced by ~40 % in both tgd mutants. This effect was accompanied by an increase in thylakoid conductance attributable to ATPase activity and so the rate of ATP synthesis was nearly unchanged. Thylakoid conductance to ions also increased in tgd mutants. However, gross carbon assimilation in tgd mutants as measured by gas exchange was only marginally affected. Rubisco activity, electron transport rate, and photosystem I and II oxidation status were not altered. Despite the large differences in proton motive force, responses to heat and high light stress were similar between tgd mutants and the wild type.  相似文献   

19.
The application of neutral or acidic amino acids to oat coleptiles induced transient depolarizations of the membrane potentials. The depolarizations are considered to reflect H+ -amino acid co-transport, and the spontaneous repolarizations are believed to be caused by subsequent electrogenic H+ extrusion. The basic amino acids depolarized the cell membrane strongly, but the repolarizations were weak or absent. The depolarizations induced by the basic amino acids were weakly sensitive to manipulations of the extracellular and intracellular pH. The depolarizations induced by the other amino acids, in contrast, were more strongly affected by the pH changes. Several amino acids induced distinct but diminished depolarizations in the presence of 2,4-dinitrophenol or cyanide, but the repolarizations were generally eliminated. These experiments support the co-transport theory but suggest somewhat different mechanisms for the transport of the neutral, acidic, and basic amino acids. We suggest that the neutral amino acids are co-transported with a single H+ and that accumulation depends upon both the ΔpH and the membrane potential components of the proton motive force. The acidic amino acids appear to be accumulated by a similar mechanism except that the transport of each molecule may be associated with a cation in addition to a single proton. The permanently protonated basic amino acids appear not to be co-transported with an additional proton. Accumulation would depend only on the membrane potential component of the proton motive force.  相似文献   

20.
The small multidrug resistance transporter EmrE is a homodimer that uses energy provided by the proton motive force to drive the efflux of drug substrates. The pKa values of its “active-site” residues—glutamate 14 (Glu14) from each subunit—must be poised around physiological pH values to efficiently couple proton import to drug export in vivo. To assess the protonation of EmrE, pH titrations were conducted with 1H-15N TROSY-HSQC nuclear magnetic resonance (NMR) spectra. Analysis of these spectra indicates that the Glu14 residues have asymmetric pKa values of 7.0 ± 0.1 and 8.2 ± 0.3 at 45°C and 6.8 ± 0.1 and 8.5 ± 0.2 at 25°C. These pKa values are substantially increased compared with typical pKa values for solvent-exposed glutamates but are within the range of published Glu14 pKa values inferred from the pH dependence of substrate binding and transport assays. The active-site mutant, E14D-EmrE, has pKa values below the physiological pH range, consistent with its impaired transport activity. The NMR spectra demonstrate that the protonation states of the active-site Glu14 residues determine both the global structure and the rate of conformational exchange between inward- and outward-facing EmrE. Thus, the pKa values of the asymmetric active-site Glu14 residues are key for proper coupling of proton import to multidrug efflux. However, the results raise new questions regarding the coupling mechanism because they show that EmrE exists in a mixture of protonation states near neutral pH and can interconvert between inward- and outward-facing forms in multiple different protonation states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号