首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protocol was developed for micropropagation of Mandevilla moricandiana (A.DC.) Woodson, a native plant from Brazil. Shoots, obtained from in vitro plantlets were used as source of nodal segments for shoot production from axillary buds. The nodal segments were grown on Murashige and Skoog medium supplemented with different concentrations of 6-benzyladenine and/or indole-3-acetic acid to induce axillary bud elongation. After a 2-mo culture period, the medium supplemented with 1.0 mg?L?1 6-benzyladenine gave the largest number of nodal segments per explant. The nodal segments obtained from plants developed under these conditions were grown on medium supplemented with different concentrations indole-3-acetic acid, ??-naphthaleneacetic acid, and indole-3-butyric acid. The use of the medium supplemented with indole-3-acetic acid and indole-3-buryric induced shoot elongation and shoot development, formation of basal callus, and/or indirect organogenesis of roots. Following transfer of shoots to soil, the plants with only basal callus showed 10% survival and developed roots from callus, while in vitro-rooted plants had a maximum 40% survival rate ex vitro. Regardless of the auxin added to the rooting medium, the acclimatization period allowed the plants rooted in vitro to develop their shoots fully. The protocol developed here is suitable for the production of shoots and rooted plantlets of M. moricandiana.  相似文献   

2.
In vitro shoot regeneration from sunflower cotyledonary explants can be obtained in the presence of kinetin and indole-3-acetic acid. In contrast, callus proliferation is obtained in the presence of 2,4-dichlorophenoxyacetic acid on culture medium. The purpose of this study was to investigate changes in protein profiles during callus and shoot development from cotyledonary explants and to correlate them with ontogenic stages during in vitro culture. Cotyledons cultured in the presence of 2,4-dichlorophenoxyacetic acid produced friable callus as a result of early division of parenchymatic cells associated with the vascular bundles of the explant. The callogenic ability was independent of the cotyledonary region used as starting explant. Direct shoot organogenesis was observed from the same type of cells growing in culture media supplemented with kinetin and indole-3-acetic acid. In this case, the regeneration potential varied among regions from which the explants were obtained. Protein profiles revealed differences associated with shoots or callus developmental programs. A 27-kDa polypeptide was uniquely detected in the explants undergoing shoot organogenesis. The amount of this polypeptide during the first 4 d of culture increased and was followed by the appearance of meristematic centers in histologically analyzed samples. This polypeptide could be used as a specific marker for in vitro shoot development in this species.  相似文献   

3.
Hypericum perforatum L. (St. John’s wort) produces a number of phytochemicals having medicinal, anti-microbial, anti-viral and anti-oxidative properties. Plant extracts are generally used for treatment of mild to medium cases of depression. Plant regeneration can be achieved in this species by in vitro culture of a variety of explants. However, there are no reports of regeneration from petal explants. In this report plant regeneration from petal explants of St. John’s wort was evaluated. Petals of various ages were cultured on agarized Murashige and Skoog 1962 (MS) medium supplemented with auxin and cytokinin (kinetin), maintained in the dark and callus and shoot regeneration determined after 28 days. At an auxin to cytokinin ratio of 10:1, callus and shoot formation were induced by all levels of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA), while 2,4-dichlorophenoxyacetic acid (2,4-D) induced only callus formation. The optimum level of auxin for shoot regeneration was 1.0 and 0.1 mg/l kinetin, where the regeneration frequency was 100 percent for all three auxins. The highest number of shoots per explant (57.4 and 53.4) was obtained with IAA and IBA, respectively. In the absence of auxin, kinetin levels of 0.1 and 0.25 mg/l induce callus and shoot formation at low frequency but not at lower levels. Callus and shoot formation did not occur in the absence of growth regulators. Petal-derived shoots were successfully rooted on half-strength MS medium without a requirement for exogenous auxin and flowering plants were established under greenhouse conditions. From these results it can be concluded that auxin type is a critical factor for plant regeneration from petal explants of Hypericum perforatum and there is no absolute requirement for high levels of cytokinin.  相似文献   

4.
Summary Petiolar and distal cotyledonary segments (PCS and DCS) of Albizia chinensis were cultured on Murashige and Skoog's (MS; 1962) medium and induced to form adventitious shoot buds in the presence of either cytokinins 6-benzylamino purine (BAP), kinetin (KN) or thidiazuron (TDZ). Superiority of BAP in inducing shoot bud and differentiation was observed. PCS was more morphogenic to shoot bud differentiation than DCS. TDZ was highly effective in inducing shoot buds, but arrested shoot growth, while KN produced more callus during differentiation of shoots. Rapid and high rate of shoot multiplication per explant was achieved through subculture in MS medium containing BAP (1.0 mg l−1) and indole-3-acetic acid (IAA) (0.5 mg l−1). BAP at low concentration was required to enhance shoot multiplication and elongation. Successful rooting of regenerated shoots was carried out in a two-step culture procedure in MS media with indole-3-butyric acid (IBA) (2.0 mg l−1) and subsequent subculture in IBA-free medium.  相似文献   

5.
Hypericum perforatum L. (St. John’s wort) produces a number of phytochemicals having medicinal, anti-microbial, anti-viral and anti-oxidative properties. Plant extracts are generally used for treatment of mild to medium cases of depression. Plant regeneration can be achieved in this species by in vitro culture of a variety of explants. However, there are no reports of regeneration from petal explants. In this report plant regeneration from petal explants of St. John’s wort was evaluated. Petals of various ages were cultured on agarized Murashige and Skoog 1962 (MS) medium supplemented with auxin and cytokinin (kinetin), maintained in the dark and callus and shoot regeneration determined after 28 days. At an auxin to cytokinin ratio of 10:1, callus and shoot formation were induced by all levels of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA), while 2,4-dichlorophenoxyacetic acid (2,4-D) induced only callus formation. The optimum level of auxin for shoot regeneration was 1.0 and 0.1 mg/l kinetin, where the regeneration frequency was 100 percent for all three auxins. The highest number of shoots per explant (57.4 and 53.4) was obtained with IAA and IBA, respectively. In the absence of auxin, kinetin levels of 0.1 and 0.25 mg/l induce callus and shoot formation at low frequency but not at lower levels. Callus and shoot formation did not occur in the absence of growth regulators. Petal-derived shoots were successfully rooted on half-strength MS medium without a requirement for exogenous auxin and flowering plants were established under greenhouse conditions. From these results it can be concluded that auxin type is a critical factor for plant regeneration from petal explants of Hypericum perforatum and there is no absolute requirement for high levels of cytokinin.  相似文献   

6.
For centuries Hypericum perforatum has been used in natural medicine. In the last decades, it has also attracted the attention of pharmaceutical industry due to its promising anti-depressant properties. The important factor in pharmaceutical application of plant material is its stable content of active compounds. Such stability requires standardized conditions of growth, e.g. an in vitro culture. Our aim was to establish a medium allowing for an effective regeneration of shoots from the standardized leaf explants in in vitro conditions. Cultures of the leaf explants carried out in darkness, on Murashige and Skoog agar medium, supplemented with auxins (2,4-dichlorophenoxyacetic acid, 2-metoxy-3,6-dichlorobenzoic acid, α-naphtaleneacetic acid, indole-3-acetic acid) and cytokinins (kinetin, N6-(benzyl)adenine, thidiazuron) resulted in callus formation. The callus produced roots on media containing indole-3-acetic acid or α-naphtaleneacetic acid alone. On media supplemented with auxins and cytokinins, indirect shoot organogenesis was also observed. The most efficient shoot formation was observed with 2.85 μM of indole-3-acetic acid and 4.44 μM of benzyladenine. Regenerated shoots were rooted on Murashige and Skoog without plant growth regulators medium or on a medium supplemented with indole-3-acetic acid. From a single leaf explant (one fifth of the leaf) after a month of the culture, 35 regenerated shoots were obtained (allowing for the formation of about 180 vegetative shoots per leaf). Successful multiplication of shoots from a standardized explant makes it possible to obtain a great quantity of uniform plant material for biotechnological purposes.  相似文献   

7.
Rooting of blue honeysuckle microshoots   总被引:5,自引:0,他引:5  
Rooting of axillary shoots of two blue honeysuckle forms, Lonicera caerulea f. caerulea and L. caerulea f. edulis, was studied. Both in vitro and ex vitro rooting procedures were used, and the effects of mineral and auxin concentrations of the rooting media were tested. Reduced mineral nutrient concentrations of modified MS medium allowed more root elongation but did not affect the primary root number. The rooting percentage was high (≥ 90) in the form caerulea microcuttings but low (< 40) in the form edulis microcuttings when not treated with auxin. The rooting frequency and primary root number of the form edulis shoots could be increased up to 100 with 10 roots per microcutting, in the continuous presence of auxin. The continuous auxin treatments repressed the elongation and increased the diameter of primary roots and induced callus formation at the base of the shoots. Differences in root systems were related to equimolar concentrations of the auxins indole-3-butyric acid, indole-3-acetic acid and α-naphthaleneacetic acid, but the differences were diminished after one month ex vitro. After transfer ex vitro, several of the roots formed in vitro and some microcuttings died. A high rooting percentage and a good ex vitro survival and root growth of the form edulis microplants were achieved by a 7-day pulse with 4 μM indole-3-butyric acid followed by rooting ex vitro. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
In vitro plantlet regeneration systems for the seed geranium (Pelargonium x hortorum Bailey) using cotyledon, hypocotyl and root explants were optimized by studying the influence of seedling age, growth regulators and excision orientation on organogenesis. Indole-3-acetic acid combined with zeatin yielded the highest rate of shoot production on cotyledon explants (0.2–2 shoots per explant). More shoots were produced on explants cut from the most basal region of cotyledons from 2 to 4-day-old seedlings than from older seedlings or more distal cut sites. Hypocotyl explants produced the highest number of shoots, up to 40 shoots per explant, on indole-3-acetic acid (2.8–5.6 mM) + zeatin (4.6 mM) or thidiazuron (4.5 mM). Maximum shoot formation (0.3–1.4 shoots per explant) on root explants occurred when they were cultured on medium containing zeatin. Regenerated shoots rooted best on a basal medium containing no growth regulators. There were substantial differences among cultivars in shoot formation from each of the explant systems.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid - TDZ thidiazuron  相似文献   

9.
Summary Variants from seed-propagated Lisianthus [Eustoma grandiflorum (Raf.) Shinn] were shoot-tip cultured to observe the effects of cytokinins, auxins and activated charcoal on organogenesis and anatomical characteristics. N6-Benzyladenine (BA) and kinetin at high concentrations (13.32–22.2 and 13.94–23.23 μM) resulted in good shoot formation but high percentages of hyperhydric shoots. Increased indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) concentrations favored root formation, while increased naphthaleneacetic acid concentration adversely affected root formation. Both shoot and root development were suppressed by activated charcoal. The highest percentage of regeneration and the largest number of glaucous shoots with an average of 15 shoots per explant after 4 wk of culture were obtained when the shoot tips were cultured on MS (Murashige and Skoog, 1962) medium supplemented with 4.44 μM BA and 1.47–4.92 μMIAA and IBA. In vitro-grown leaves had a higher number of stomata than field-grown leaves but the length and diameter of stomata showed no significant difference between the two types. Field-grown leaves had well-developed epicuticular wax layers. which were not observed on hyperhydric leaves. Hyperthydric plantlets could not survive when transplanted to soil, whereas glaucous plantlets survived in more than 80% of cases. Variation in soil type resulted in a slight difference in plantlet survival. Based on the results of our experiment, this protocol should be useful for the rapid micropropagation of lisianthus.  相似文献   

10.
An efficient root induction system has been established for in vitro-regenerated Jatropha curcas L. shoots. Callus formation on shoots transferred to auxin containing medium was found to be a prominent and recurrent problem for rooting of in vitro-cultivated J. curcas. In particular, the type of auxins and cytokinins applied in the culture media were shown to strongly influence the severity of callus formation. Shoots cultivated on meta-methoxytopolin riboside (MemTR) were free of callus and produced elongated stems and well-developed leaves in comparison to the cytokinins benzyl adenine, zeatin, and thidiazuron. Subsequent root induction experiments were performed with shoots precultured on MemTR-containing medium. Shoots were excised and transferred to Murashige and Skoog (MS) medium supplemented with different concentrations of indole-3-butyric acid (IBA), indole-3-acetic acid (IAA), and α-naphtaleneacetic acid (NAA). The induction of excessive callus formation was avoided only on IBA-containing medium. The optimum rooting medium with good root induction (35%) and 1.2 roots per shoot contained half-strength MS salts supplemented with 2.5 μM IBA. The same medium supplemented with 0.25% (w/v) activated charcoal produced 46% rooted shoots. Further improvement of rooting was obtained by transferring in vitro grown shoots to woody plant medium containing phloroglucinol (PG). In the presence of 2.5 μM IBA and 238 μM PG, 83% of the shoots rooted with on average 3.1 roots per shoot. We also analyzed the impact of light quality on the rooting capacity of Jatropha in vitro grown shoots. In general, light-emitting diodes (LEDs) light sources were less efficient for root induction. Red LED light provided the most favorable growth conditions, inducing a rooting response in 65% of the shoots, which produced on average 5.5 roots per shoot. These results indicate that adventitious rooting in J. curcas is under control of photoreceptors and that optimal rooting requires fine-tuning of the salt concentration, auxin, and cytokinin balance and application of synergistic compounds.  相似文献   

11.
An efficient in vitro plant regeneration protocol through somatic embryogenesis and direct shoot organogenesis has been developed for pearl millet (Pennisetum glaucum). Efficient plant regeneration is a prerequisite for a complete genetic transformation protocol. Shoot tips, immature inflorescences, and seeds of two genotypes (843B and 7042-DMR) of pearl millet formed callus when cultured on Murashige and Skoog (MS) medium supplemented with varying levels of 2,4-dichlorophenoxyacetic acid (2,4-D; 4.5, 9, 13.5, and 18 μM). The level of 2,4-D, the type of explant, and the genotype significantly effected callus induction. Calli from each of the three explant types developed somatic embryos on MS medium containing 2.22 μM 6-benzyladenine (BA) and either 1.13, 2.25, or 4.5 μM of 2,4-D. Somatic embryos developed from all three explants and generated shoots on MS medium containing high levels of BA (4.4, 8.8, or 13.2 μM) combined with 0.56 μM 2,4-D. The calli from the immature inflorescences exhibited the highest percentage of somatic embryogenesis and shoot regeneration. Moreover, these calli yielded the maximum number of differentiated shoots per callus. An efficient and direct shoot organogenesis protocol, without a visible, intervening callus stage, was successfully developed from shoot tip explants of both genotypes of pearl millet. Multiple shoots were induced on MS medium containing either BA or kinetin (4.4, 8.8, 17.6, or 26.4 μM). The number of shoots formed per shoot tip was significantly influenced by the level of cytokinin (BA/kinetin) and genotype. Maximum rooting was induced in 1/2 strength MS with 0.8% activated charcoal. The regenerated plants were transferred to soil in pots, where they exhibited normal growth.  相似文献   

12.
Seedling-derived explants of the Afghan pine, Pinus eldarica, were cultured in a triplicate experiment to produce callus that was serially subcultured for up to three years. Callus was removed at various times and induced to regenerate shoots by de novo organogenesis. The shoot regeneration process involved the identification of four discrete developmental steps, each requiring a separate cultural manipulation. In one case a regenerated shoot was induced to root following an auxin pulse treatment. Induction and limited development of buds in callus derived from mature-tree explants was also achieved. This is the first reproducible system for shoot regeneration from long-term callus cultures of a conifer.Abbreviations MMS modified Murashige and Skoog (1962) medium - BA 6-benzylaminopurine - IBA indole-3-butyric acid - kinetin 6-furfurylaminopurine - NAA 1-naphthaleneacetic acid  相似文献   

13.
The effect of various hormonal combinations on callus formation and regeneration of shoot and root from leaf derived callus of Acanthophyllum sordidum Bunge ex Boiss. has been studied. Proteins and activity of antioxidant enzymes were also evaluated during shoot and root organogenesis from callus. Calli were induced from leaf explants excised from 30-d-old seedlings grown on Murashige and Skoog medium containing 4.52 μM 2,4-dichlorophenoxyacetic acid + 4.65 μM kinetin. Maximum growth of calli and the most efficient regeneration of shoots and roots occurred with 2.69 μM 1-naphthalene acetic acid (NAA), 2.69 μM NAA + 4.54 μM thidiazuron and 2.46 μM indole-3-butyric acid. Protein content decreased in calli and increased significantly during regeneration of shoots from callus. Superoxide dismutase activity decreased in calli comparing to that of seedlings, then increased in regenerated shoots and roots. High catalase activity was detected in seedlings and regenerated shoots, whereas high peroxidase activity was observed in calli and regenerated roots.  相似文献   

14.
Filipendula ulmaria (L.) Maxim (meadowsweet) is a medicinal plant that is claimed to have several biological activities, including anti-tumor, anti-carcinogenic, anti-oxidant, anti-coagulant, anti-ulcerogenic, anti-microbial, anti-arthritic, and immunomodulatory properties. This report describes, for the first time, an efficient plant regeneration system for F. ulmaria via adventitious shoot development from leaf, petiole, and root explants cultured on Murashige and Skoog’s minimal organics medium containing different concentrations of thidiazuron (TDZ), benzyladenine, and kinetin either alone or in combination with different auxins. Relatively extensive/prolific shoot regeneration was observed in all three explant types with TDZ in combination with indole-3-acetic acid (IAA). Gibberellic acid (GA3), TDZ, and IAA combinations were also tested. The best shoot proliferation was observed among root explants cultured on media supplemented with 0.45 μM TDZ + 2.85 μM IAA + 1.44 μM GA3. Regenerated shoots were transferred to rooting media containing different concentrations of either IAA, indole-3-butyric acid (IBA), naphthalene acetic acid, or 2,4-dichlorophenoxyacetic acid. Most shoots developed roots on medium with 2.46 μM IBA. Rooted explants were transferred to vermiculite in Magenta containers for a 2-wk acclimatization period and then finally to plastic pots containing potting soil. The plantlets in soil were kept in growth chambers for 2 wk before transferring to greenhouse conditions.  相似文献   

15.
Traditional propagation of lemon balm (Melissa officinalis L.) is inefficient for establishing a good quality clonal population. Results of the presented experiments outline an effective method for micropropagation of this species. Following culture initiation from shoots of field-grown plants on growth regulator free Murashige–Skoog medium, rapid shoot multiplication with only rudimentary root formation could be achieved on media containing various concentrations of indole-3-acetic acid and 6-benzyladenine. The combination of 5.71 μM indole-3-acetic acid and 6.66 μM 6-benzyladenine resulted in the best multiplication. Transfer of propagules to media containing indole-3-acetic acid and kinetin did not result in shoot proliferation; however, single plantlets grown on media containing 5.71 μM indole-3-acetic acid and 13.9 μM kinetin developed more compact shoots and stronger roots than the control plants and were suitable for acclimatisation with an efficiency over 95%. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
The aim of this study was to develop a new micropropagation system for Cassia angustifolia Vahl., an important medicinal legume using root explant as starting material. Root explants taken from 30-day-old aseptic seedlings were cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators: 6-benzyladenine (BA), kinetin (Kn), and thidiazuron (TDZ). Organogenic nodular calli obtained on MS + TDZ (1.0 μM) were transferred to shoot regeneration medium supplemented with different cytokinins (BA, Kn or TDZ) either alone or in combination with auxin:indole-3-acetic acid or α-naphthalene acetic acid. Maximum shoot regeneration frequency (90%) was obtained on MS + BA (2.5 μM) + NAA (0.6 μM) wherein a maximum of 42.76 ± 1.47 shoot buds per explant were induced with a maximum conversion rate of 35.63 ± 0.75 shoots per explant and average shoot length of 5.43 ± 0.20 cm. Elongated microshoots were successfully rooted under ex vitro conditions by pulse treatment in 200 μM of indole-3-butyric acid for half an hour. Microshoots were rooted, acclimatized and hardened off simultaneously in sterilized soilrite inside the growth room and then established in pots containing sterilized soil and manure (1:1) and grown under greenhouse condition with 90% survival rate. The histological sections at different developmental stages of shoot buds revealed the organization of nodular meristematic zone leading to the orientation and differentiation of shoot buds in large number and thereafter conversion into healthy shoots.  相似文献   

17.
A protocol for micropropagation of Boswellia ovalifoliolata Bal & Henry (Burseraceae) was developed using cotyledonary nodal explant on Murashige and Skoog modified medium (MS). A comparative study of micropropagation with 6-benzyladenine, kinetin and thidiazuron along with 1-naphthalene acetic acid (0.054 microM) was conducted. The highest shoot multiplication (7.1 +/- 0.2 shoots per node) was achieved in 50 d on MS supplemented with thidiazuron (2.72 microM). Excised shoot cuttings of 3.0 cm were placed on the MS basal medium supplemented with indole-3-acetic acid and indole-3-butyric acid alone and in combinations for rooting. Activated charcoal (100 mg l(-1)) and polyvinylpyrrolidone (40 mg l(-1)) were added to the medium to prevent browning of cultures. The regenerated plantlets have been successfully acclimatized and transferred to soil.  相似文献   

18.
Summary Shoot tips and leaves excised from in vitro shoot cultures of Salvia nemorosa were evaluated for their organogenic capacity under in vitro conditions. The best shoot proliferation from shoot tips was obtained on Murashige and Skoog (MS) medium supplemented with 8.9 μM 6-benzylaminopurine (BA) and 2.9 μM indole-3-acetic acid (IAA). Leaf lamina and petiole explants formed shoots through organogenesis via callus stage and/or directly from explant tissue. The highest values for shoot regeneration were obtained with 0.9 μM BA and 2.9 μM IAA for lamina explants. No shoot organogenesis was obtained on leaf explants cultured on MS medium supplemented with α-naphthaleneacetic acid (NAA). The regenerated shoots rooted the best on MS medium containing 0.6 μM IAA or 0.5 μM NAA. In vitro-propagated plants were transferred to soil with a survival rate of 85% after 3 mo.  相似文献   

19.
Shoot tips from seedlings of Digitalis thapsi L. were cultured on Murashige and Skoog's medium and the effect of various auxins (2,4-D, NAA and IAA) were analyzed alone or in combination with cytokinis (BA and kinetin). Shoot multiplication and direct rooting of the new shoots were obtained after four weeks of culture in MS medium without hormones, but callus formation and the appearance of abnormal phenotypes were frequent. The addition of auxins to the cultures prevented the formation of callus but not the appearance of variant phenotypes. Both drawbacks could be avoided by combination of NAA or IAA with BA or kinetin. The best results for shoot multiplication and direct rooting were obtained with 0.5 mg l-1 NAA and 0.1 or 0.5 mg l-1 kinetin.Abbreviations BA 6-benciladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - Kin kinetin - NAA naphtalene acetic acid - MS Murashige and Skoog  相似文献   

20.
Multiple shoots of Spilanthes acmella Murr. were induced from nodal buds of in vivo and in vitro seedlings on Murashige and Skoog (MS) medium containing 1.0 mg dm−3 6-benzyladenine (BA) and 0.1 mg dm−3 α-naphthalene-acetic acid (NAA). Adventitious shoots were successfully regenerated from the leaf explants derived from the above mentioned multiple shoots. The efficiency of shoot regeneration was tested in the MS medium containing BA, kinetin, or 2-isopentenyl adenine in combination with NAA, indole-3-acetic acid (IAA), or indole-3-butyric acid (IBA) and gibberellic acid. Maximum number of shoots per explant (20 ± 0.47) was recorded with 3.0 mg dm−3 BA and 1.0 mg dm−3 IAA. An anatomical study confirmed shoot regeneration via direct organogenesis. About 95 % of the in vitro shoots developed roots after transfer to half strength MS medium containing 1.0 mg dm−3 IBA. 95 % of the plantlets were successfully acclimatized and established in soil. The transplanted plantlets showed normal flowering without any morphological variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号