首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We tested the hypothesis that exposure to antibiotics alters the growth and reproductive responses of Daphnia magna to changing stoichiometric food quality. To do so, we measured growth and reproduction of differentially P-nourished Daphnia in the presence and absence of sublethal concentrations of antibiotics. We found that exposure to an antibiotic cocktail significantly reduced an index of the microbial load of Daphnia and altered its growth responses to changing dietary P-content. Growth rates of Daphnia consuming the most P-rich and P-poor food increased with antibiotic exposure but were negatively or not affected in animals eating mildly to moderately P-limiting food. Similar effects were found in a subsequent experiment where daphnid neonates were exposed to natural bacterial communities prior to receiving antibiotics and being fed different food C:P ratios. In contrast, antibiotic effects on Daphnia reproduction were either not detected (number and size of broods) or were relatively minor (day of first reproduction). We also found no evidence that gut flora provides defense against pathogenic bacterial infection; instead, infection rates in Daphnia by a bacterial microparasite, Pasteuria ramosa, decreased in animals that had experienced prior antibiotic exposure. Our results demonstrate that antibiotic exposure reduced the microbial load and altered growth rates of an important zooplankton herbivore. Given the mediating role of animal’s food C:P ratio, our results show that interactions between Daphnia and its microbial symbionts vary in strength and nature partly with the host’s nutritional state.  相似文献   

2.
Maternal care is provided by several spider species, but there are no reports of mother spiders recognizing their young, which suggests that maternal care can be exploited by unrelated individuals. Diaea ergandros, a crab spider with extreme, sacrificial maternal care, does accept unrelated spiderlings (ca. 43.9% of spiderlings) into its nest in areas of high nest density. However, a field and a laboratory experiment with mother spiders and natural and adoptive spiderlings demonstrated that mothers did recognize their own offspring. Recognition was not expressed in survival as adopted (unrelated) spiderlings had similar survival rate to that of natural offspring. Instead it was displayed in growth; mother D. ergandros caught large prey items for their own offspring, but not for adopted spiderlings, and so natural offspring grew more than adopted spiderlings. Also, mothers produced trophic oocytes, which are important for the sacrificial care that influences spiderling survival, only when they lived with their own offspring.  相似文献   

3.
4.
Studies dealing with changes in the plant internal nutrient cycling in response to natural, long-term P-fertility gradients are scarce. In this short report, we show some evidence on how leaf P dynamics can be drastically altered when plants typical from nutrient-poor sites grow in long-term P-enriched soils. The study was conducted in two natural populations of the Mediterranean evergreen shrub Pistacia lentiscus L.: one in a P-poor site and the other in a P-rich site. Soil texture and N, P, and organic matter contents were measured at each site. Leaf N and P concentrations were also measured in current-year, 1-year-old, and 2-year-old leaves, and in the senesced leaves. In the P-poor site, leaf P and N decreased as the leaves aged. This occurs because of nutrient reabsorption to other plant organs and/or dilution of nutrients by carbon compounds. In contrast, the leaves from the P-rich site acummulated P (but not N) during leaf lifespan. Consequently, P concentration in senesced leaves was very high in the P-rich site. These results show that, in long-lived perennials living in the field, long-term P enrichment can switch the normal process of P resorption during leaf aging to P accretion in the leaf. P accumulation in the leaves, which are periodically shed, might constitute a simple P excretion mechanism for plants typical from P-poor soils.  相似文献   

5.
Phosphorus availability may shape plant–microorganism–soil interactions in forest ecosystems. Our aim was to quantify the interactions between soil P availability and P nutrition strategies of European beech (Fagus sylvatica) forests. We assumed that plants and microorganisms of P-rich forests carry over mineral-bound P into the biogeochemical P cycle (acquiring strategy). In contrast, P-poor ecosystems establish tight P cycles to sustain their P demand (recycling strategy). We tested if this conceptual model on supply-controlled P nutrition strategies was consistent with data from five European beech forest ecosystems with different parent materials (geosequence), covering a wide range of total soil P stocks (160–900 g P m?2; <1 m depth). We analyzed numerous soil chemical and biological properties. Especially P-rich beech ecosystems accumulated P in topsoil horizons in moderately labile forms. Forest floor turnover rates decreased with decreasing total P stocks (from 1/5 to 1/40 per year) while ratios between organic carbon and organic phosphorus (C:Porg) increased from 110 to 984 (A horizons). High proportions of fine-root biomass in forest floors seemed to favor tight P recycling. Phosphorus in fine-root biomass increased relative to microbial P with decreasing P stocks. Concomitantly, phosphodiesterase activity decreased, which might explain increasing proportions of diester-P remaining in the soil organic matter. With decreasing P supply indicator values for P acquisition decreased and those for recycling increased, implying adjustment of plant–microorganism–soil feedbacks to soil P availability. Intense recycling improves the P use efficiency of beech forests.  相似文献   

6.
Root surface phosphatase activity in ecotypes of Aegilops peregrina   总被引:2,自引:0,他引:2  
The relationships between root surface phosphatase activity and the edaphic factors of their native habitats were investigated in four ecotypes of Aegilops peregrina (Hack.) Maire et Weil. In one set of experiments plants were grown in phosphate-deficient nutrient solution cultures (5 μ M ) with three pH values: 5.5, 6.5 and 7.5. In a second series, plants were grown in both P-poor and P-rich soils.
Results showed an optimal activity of the commonly-described root surface acid phosphatase of pH 4.5–5.0 in the ecotypes Meron (a P-poor montmorillonitic, typical mediterranean Terra-Rossa soil) and Har-Hurshan (a P-rich calcareous soil). However, in the ecotypes Malkiya (a P-rich kaolinitic Terra-Rossa) and Bet-Guvrin (a P-rich calcareous soil) the optimal activity of the phosphatase occurred at pH 6.0. The pH level of the growth solution had no effect on the pH of optimal activity of the phosphatase in the ecotypes Malkiya and Bet-Guvrin, but it somewhat affected their level of activity.
Phosphatase activity was stimulated when plant roots were grown in a P-poor soil, as compared to the activity of those which were grown in a P-rich soil. Plants of the Malkiya ecotype exhibited the strongest activation of phosphatase as compared to the other three ecotypes. It seems that ecotypes which have evolved in P-rich soils may regulate their root surface phosphatase activity better than those which have evolved in P-poor soils.  相似文献   

7.
The association between an adverse early life environment and increased susceptibility to later-life metabolic disorders such as obesity, type 2 diabetes and cardiovascular disease is described by the developmental origins of health and disease hypothesis. Employing a rat model of maternal high fat (MHF) nutrition, we recently reported that offspring born to MHF mothers are small at birth and develop a postnatal phenotype that closely resembles that of the human metabolic syndrome. Livers of offspring born to MHF mothers also display a fatty phenotype reflecting hepatic steatosis and characteristics of non-alcoholic fatty liver disease. In the present study we hypothesised that a MHF diet leads to altered regulation of liver development in offspring; a derangement that may be detectable during early postnatal life. Livers were collected at postnatal days 2 (P2) and 27 (P27) from male offspring of control and MHF mothers (n = 8 per group). Cell cycle dynamics, measured by flow cytometry, revealed significant G0/G1 arrest in the livers of P2 offspring born to MHF mothers, associated with an increased expression of the hepatic cell cycle inhibitor Cdkn1a. In P2 livers, Cdkn1a was hypomethylated at specific CpG dinucleotides and first exon in offspring of MHF mothers and was shown to correlate with a demonstrable increase in mRNA expression levels. These modifications at P2 preceded observable reductions in liver weight and liver∶brain weight ratio at P27, but there were no persistent changes in cell cycle dynamics or DNA methylation in MHF offspring at this time. Since Cdkn1a up-regulation has been associated with hepatocyte growth in pathologic states, our data may be suggestive of early hepatic dysfunction in neonates born to high fat fed mothers. It is likely that these offspring are predisposed to long-term hepatic dysfunction.  相似文献   

8.
Life history characteristics and resulting fitness consequences manifest not only in an individual experiencing environmental conditions but also in its offspring via trans-generational effects. We conducted a set of experiments to assess the direct and trans-generational effects of food deprivation in the Glanville fritillary butterfly Melitaea cinxia. Food availability was manipulated during the final stages of larval development and performance was assessed during two generations. Direct responses to food deprivation were relatively minor. Food-deprived individuals compensated, via increased development time, to reach a similar mass as adults from the control group. Delayed costs of compensatory growth were observed, as food-deprived individuals had either reduced fecundity or lifespan depending on the type of feeding treatment they had experienced (intermittent vs. continuous). Female food deprivation did not directly affect her offspring’s developmental trajectory, but the way the offspring coped with food deprivation. Offspring of mothers from control or intermittent starvation treatments reached the size of those in the control group via increased development time when being starved. In contrast, offspring of mothers that had experienced 2 days of continuous food deprivation grew even larger than control animals, when deprived of food themselves. Offspring of food-deprived Glanville fritillary initially showed poor immune response to parasitism, but not later on in development.  相似文献   

9.
Abstract The existence of adaptive phenotypic plasticity demands that we study the evolution of reaction norms, rather than just the evolution of fixed traits. This approach requires the examination of functional relationships among traits not only in a single environment but across environments and between traits and plasticity itself. In this study, I examined the interplay of plasticity and local adaptation of offspring size in the Trinidadian guppy, Poecilia reticulata. Guppies respond to food restriction by growing and reproducing less but also by producing larger offspring. This plastic difference in offspring size is of the same order of magnitude as evolved genetic differences among populations. Larger offspring sizes are thought to have evolved as an adaptation to the competitive environment faced by newborn guppies in some environments. If plastic responses to maternal food limitation can achieve the same fitness benefit, then why has guppy offspring size evolved at all? To explore this question, I examined the plastic response to food level of females from two natural populations that experience different selective environments. My goals were to examine whether the plastic responses to food level varied between populations, test the consequences of maternal manipulation of offspring size for offspring fitness, and assess whether costs of plasticity exist that could account for the evolution of mean offspring size across populations. In each population, full‐sib sisters were exposed to either a low‐ or high‐food treatment. Females from both populations produced larger, leaner offspring in response to food limitation. However, the population that was thought to have a history of selection for larger offspring was less plastic in its investment per offspring in response to maternal mass, maternal food level, and fecundity than the population under selection for small offspring size. To test the consequences of maternal manipulation of offspring size for offspring fitness, I raised the offspring of low‐ and high‐food mothers in either low‐ or high‐food environments. No maternal effects were detected at high food levels, supporting the prediction that mothers should increase fecundity rather than offspring size in noncompetitive environments. For offspring raised under low food levels, maternal effects on juvenile size and male size at maturity varied significantly between populations, reflecting their initial differences in maternal manipulation of offspring size; nevertheless, in both populations, increased investment per offspring increased offspring fitness. Several correlates of plasticity in investment per offspring that could affect the evolution of offspring size in guppies were identified. Under low‐food conditions, mothers from more plastic families invested more in future reproduction and less in their own soma. Similarly, offspring from more plastic families were smaller as juveniles and female offspring reproduced earlier. These correlations suggest that a fixed, high level of investment per offspring might be favored over a plastic response in a chronically low‐resource environment or in an environment that selects for lower reproductive effort  相似文献   

10.
The neurotransmitter dopamine has been shown to play an important role in modulating behavioral, morphological, and life history responses to food abundance. However, costs of expressing high dopamine levels remain poorly studied and are essential for understanding the evolution of the dopamine system. Negative maternal effects on offspring size from enhanced maternal dopamine levels have previously been documented in Daphnia. Here, we tested whether this translates into fitness costs in terms of lower starvation resistance in offspring. We exposed Daphnia magna mothers to aqueous dopamine (2.3 or 0 mg/L for the control) at two food levels (ad libitum vs. 30% ad libitum) and recorded a range of maternal life history traits. The longevity of their offspring was then quantified in the absence of food. In both control and dopamine treatments, mothers that experienced restricted food ration had lower somatic growth rates and higher age at maturation. Maternal food restriction also resulted in production of larger offspring that had a superior starvation resistance compared to ad libitum groups. However, although dopamine exposed mothers produced smaller offspring than controls at restricted food ration, these smaller offspring survived longer under starvation. Hence, maternal dopamine exposure provided an improved offspring starvation resistance. We discuss the relative importance of proximate and ultimate causes for why Dmagna may not evolve toward higher endogenous dopamine levels despite the fitness benefits this appears to have.  相似文献   

11.
Maternal effects have wide-ranging effects on life-history traits. Here, using the crustacean Daphnia magna, we document a new effect: maternal food quantity affects offspring feeding rate, with low quantities of food triggering mothers to produce slow-feeding offspring. Such a change in the rate of resource acquisition has broad implications for population growth or dynamics and for interactions with, for instance, predators and parasites. This maternal effect can also explain the previously puzzling situation that the offspring of well-fed mothers, despite being smaller, grow and reproduce better than the offspring of food-starved mothers. As an additional source of variation in resource acquisition, this maternal effect may also influence relationships between life-history traits, i.e. trade-offs, and thus constraints on adaptation. Maternal nutrition has long-lasting effects on health and particularly diet-related traits in humans; finding an effect of maternal nutrition on offspring feeding rate in Daphnia highlights the utility of this organism as a powerful experimental model for exploring the relationship between maternal diet and offspring fitness.  相似文献   

12.
Maternal effects are widely observed, but their adaptive nature remains difficult to describe and interpret. We investigated adaptive maternal effects in a clone of the crustacean Daphnia magna, experimentally varying both maternal age and maternal food and subsequently varying food available to offspring. We had two main predictions: that offspring in a food environment matched to their mothers should fare better than offspring in unmatched environments, and that offspring of older mothers would fare better in low food environments. We detected numerous maternal effects, for example offspring of poorly fed mothers were large, whereas offspring of older mothers were both large and showed an earlier age at first reproduction. However, these maternal effects did not clearly translate into the predicted differences in reproduction. Thus, our predictions about adaptive maternal effects in response to food variation were not met in this genotype of Daphnia magna.  相似文献   

13.
Maternal effects can have lasting fitness consequences for offspring, but these effects are often difficult to disentangle from associated responses in offspring traits. We studied persistent maternal effects on offspring survival in North American red squirrels (Tamiasciurus hudsonicus) by manipulating maternal nutrition without altering the post-emergent nutritional environment experienced by offspring. This was accomplished by providing supplemental food to reproductive females over winter and during reproduction, but removing the supplemental food from the system prior to juvenile emergence. We then monitored juvenile dispersal, settlement and survival from birth to 1 year of age. Juveniles from supplemented mothers experienced persistent and magnifying survival advantages over juveniles from control mothers long after supplemental food was removed. These maternal effects on survival persisted, despite no observable effect on traits normally associated with high offspring quality, such as body size, dispersal distance or territory quality. However, supplemented mothers did provide their juveniles an early start by breeding an average of 18 days earlier than control mothers, which may explain the persistent survival advantages their juveniles experienced.  相似文献   

14.
Summary. Laboratory experiments with Polistes chinensis (Pérez) showed that growth rates and weights of the first-hatched offspring were not different between food-available and food-deficient conditions. In food-deficient colonies, some first-hatched offspring grew quickly, but their dry weights were not different from that of later offspring. The present results suggest that foundresses of P. chinensis may intensively feed some first-hatched larvae to produce the first workers quickly under food-deficient conditions. Since food availability of field foundresses of this species has been estimated as very low, it seems likely that they may produce the first offspring as early as possible by such feeding. On the other hand, heavier offspring were produced when extra food is available, especially in the latter half of the order of emergence. Foundresses of this species may change the amount of prey fed to each larva in response to food availability.  相似文献   

15.
In freshwater environments, one of the challenges aquatic grazers face are periods of suboptimal food quantity and quality. In a life table experiment, the effects of food quantity (a gradient of algae concentration) and quality (a diet of cyanobacteria) on the life histories and resource allocation strategy in Daphnia magna were tested. Growth‐related traits were similarly affected under different food regimes while the reproductive strategies differed in animals exposed to low food quantity and quality. The per‐clutch investment (clutch volume) did not differ between Daphnia fed with cyanobacteria and underfed mothers, but resources were differently allocated; underfed mothers increased their per‐offspring investment by producing fewer, but larger eggs, whereas cyanobacteria‐fed mothers invested in a greater number of eggs of smaller size. I argue that both strategies of resource allocation (number vs. size of eggs) may be adaptive under the given food regime. The results of the study show that the cyanobacteria diet‐driven fitness losses are comparable to losses caused by food quantity, which is only slightly above the growth capability threshold for Daphnia.  相似文献   

16.
Hemmi A  Jormalainen V 《Oecologia》2004,140(2):302-311
Environmental variation in food resources modifies performance of herbivores, in addition to genetic variation and maternal effects. In marine benthic habitats, eutrophication may modify herbivores diets by changing host species composition or nutritional quality of algae for herbivores. We studied experimentally the effects of diet breadth and nutrient availability for the host algae on fitness components of the herbivorous isopod Idotea baltica. We fed the adult isopods with the brown algae Fucus vesiculosus and Pilayella littoralis and juveniles with the green alga Cladophora glomerata. By using half-sib families, we were able to separate the genetic, environmental and maternal effects on intermolt duration and size of the juveniles. The mothers confined to the diet consisting of both Fucus and Pilayella grew better and produced larger egg mass than those having consumed Fucus alone. Nutrient enhancement of algae did not influence the performance of the adult herbivores. However, the juveniles achieved twice the weight as well as shorter intermolt duration when consuming nutrient-treated C. glomerata. Mothers nutrition, either nutrient enrichment of her food algae or diet breadth, did not affect juvenile survival or growth as such, but we found evidence that the broader diet consumed by the mother mediated offspring performance by further accelerating growth rate of the offspring that fed on nutrient-treated alga. Intermolt duration was a highly heritable trait, but size showed very low heritability. Instead, maternal effects on size were substantial, suggesting that differences among mothers in their egg-provisioning ability strongly affect weight gain of their offspring. A high amount of additive genetic variance in intermolt duration implies potential for quick evolutionary responses in the growth schedule in the face of changes in the selective environment. We conclude that eutrophication, in addition to improving growth and reproduction of I. baltica by enhancing food quality and by providing opportunity for broader, more profitable diets, may act as a selective agent on life-history traits. Eutrophication of coastal waters is thus likely to reflect in herbivore density, population dynamics and eventually, grazing pressure of littoral macroalgae.  相似文献   

17.
Early infancy, the period when offspring rely not only on their own immunity to combat food‐borne antigens but also acquire immunity through maternal sources (via transplacental routes and breast milk), is critical for immune system development Hence the present study was designed to evaluate the effect on offspring of administration of probiotic‐containing fermented milk (PFM) either to mothers during the suckling period or to their offspring after weaning either separately or sequentially. PFM‐fed mice showed enhanced leukocyte functionality in offspring as evidenced by significantly (P < 0.05) increased release of lysosomal enzymes (β‐galactosidase, β‐glucuronidase) in peritoneal fluid and nitric oxide production in culture supernatants of activated macrophages. Further, remarkably reduced levels (P < 0.01) of inflammatory markers (TNF‐α, monocyte chemotactic protein‐1) and allergic antibodies (total and milk specific IgE) were observed in offspring where PFM was fed either to them or to their mothers. However, considerably increased levels (P < 0.05) of SIgA were found in the guts of control and experimental groups animals irrespective of their exposure to PFM. Restoration of Th1/Th2 homeostasis further confirmed the useful effects of PFM supplementation by shifting the cytokine profile (IL‐4, IFN‐γ and IL‐10) with increased IFN‐γ/IL‐4 and reduced IgE/Ig2Ga ratios. Hence, it is logical to conclude that administration of Lactobacillus rhamnosus‐containing (MTCC:5897) fermented milk to mothers during the suckling period and to their offspring after weaning has beneficial effects on the development of newborns immune systems; this effect appears to be more pronounced when mothers are fed with it.  相似文献   

18.
In this study, we examined to what extent the internal site factors (light and soil conditions) are responsible for herb layer diversity in oak-dominated forest stands growing on different substrates in central Bohemia (Czech Republic). We collected data on herb layer diversity, light and nutrient availability at nine oak stands, representing the range of environmental variability for these types of forests in the region. We found that species richness increased with light availability, but only if the site occupied predominantly by fast-colonizing species was excluded from the analysis (P < 0.05). Species richness correlated positively with soil pH and negatively with nitrogen (N) concentration in humus (P < 0.05). The highest species richness was found at sites with not only low N soil concentration, but also simultaneously with high phosphorus (P) soil concentration. Despite this finding, however, herb layer diversity is evidently threatened much more in P-rich soils than in P-poor soils. It seems that the enhancement of N in an ecosystem due to litter accumulation and N deposition generally leads to only a minor increase in N availability at P-poor sites, but a considerable increase at P-rich sites. Therefore, species richness can be exceptionally high at P-rich sites, but only under conditions of strong N limitation.  相似文献   

19.
Contrary to an expectation from the size-efficiency hypothesis, small herbivore zooplankton such as Ceriodaphnia often competitively predominate against large species such as Daphnia. However, little is known about critical feeding conditions favoring Ceriodaphnia over Daphnia. To elucidate these conditions, a series of growth experiments was performed with various types of foods in terms of phosphorus (P) contents and composition (algae and bacteria). An experiment with P-rich algae showed that the threshold food level, at which an individual’s growth rate equals zero, was not significantly different between the two species. However, the food P:C ratio, at which the growth rate becomes zero, was lower for Daphnia than for Ceriodaphnia, suggesting that the latter species is rather disfavored by P-poor algae. Ceriodaphnia showed a higher growth rate than Daphnia only when a substantial amount of bacteria was supplied together with a low amount of P-poor algae as food. These results suggest that an abundance of bacteria relative to algae plays a crucial role in favoring Ceriodaphnia over Daphnia because these are an important food resource for the former species but not for the latter.  相似文献   

20.
Data on phosphate excretion rates of zooplankton are based on measurements using the pelagic crustacean zooplankton of Lake Vechten and laboratory-cultured Daphnia galeata. In case of Daphnia sp we measured the effects of feeding on P-rich algae and P-poor algae (Scenedesmus) as food on the P-excretion rates at 20°C. The excretion rates of the natural zooplankton community, irrespective of the influence of the factors mentioned, varied by an order of magnitude: 0.025–0.275µg PO4-Pmg–1C in zooplankton (C zp ) h–1. The temperature accounted for about half the observed variation in excretion rates. The mean excretion rates in the lake, computed for 20°C, varied between 0.141 and 0.260 µg Pmg–1C zp h–1. Based on data of zooplankton biomass in the lake the P-regeneration rates by zooplankton covered between 22 and 239% of the P-demand of phytoplankton during the different months of the study period.In D. galeata, whereas the C/P ratios of the Scenedesmus used as food differed by a factor 5 in the experiments, the excretion rates differed by factor 3 only. Despite the higher P-excretion rates (0.258± 0.022 µg PO4-P mg–1 C h–1) of the daphnids fed with P-rich food than those fed with P-poor food (0.105 ± 0.047 µg PO4-P mg–1 C hp–1), both the categories of the animals were apparently conserving P. A survey of the literature on zooplankton excretion shows that in Daphnia the excretion rates vary by a factor 30, irrespective of the species and size of animals and method of estimation and temperature used.About two-thirds of this variation can be explained by size and temperature. A major problem of comparability of studies on P-regeneration by zooplankton relates to the existing techniques of P determination, which necessitates concentrating the animals several times above the in situ concentration (crowding) and prolonged experimental duration (starving), both of which manifest in marked changes that probably lead to underestimation of the real rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号