首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
The d,d-transpeptidase activity of Penicillin Binding Proteins (PBPs) is essential to maintain cell wall integrity. PBPs catalyze the final step of the peptidoglycan synthesis by forming 4 → 3 cross-links between two peptide stems. Recently, a novel β-lactam resistance mechanism involving l,d-transpeptidases has been identified in Enterococcus faecium and Mycobacterium tuberculosis. In this resistance pathway, the classical 4 → 3 cross-links are replaced by 3 → 3 cross-links, whose formation are catalyzed by the l,d-transpeptidases. To date, only one class of the entire β-lactam family, the carbapenems, is able to inhibit the l,d-transpeptidase activity. Nevertheless, the specificity of this inactivation is still not understood. Hence, the study of this new transpeptidase family is of considerable interest in order to understand the mechanism of the l,d-transpeptidases inhibition by carbapenems. In this context, we present herein the backbone and side-chain 1H, 15N and 13C NMR assignment of the l,d-transpeptidase from Bacillus subtilis (LdtBs) in the apo and in the acylated form with a carbapenem, the imipenem.  相似文献   

2.
Astrocytic excitatory amino acid transporters (EAATs) regulate excitatory transmission and limit excitotoxicity. Evidence for a functional interface between EAATs and glial fibrillary acidic protein (GFAP) relevant to astrocytic morphology led to investigations of actions of transportable (d-Aspartate (d-Asp) and (2S,3S,4R)-2-(carboxycyclopropyl)glycine (l-CCG-III)) and non-transportable (dl-threo-β-benzyloxyaspartate (dl-TBOA)) inhibitors of Glu uptake in murine astrocytes. d-Asp (1 mM), l-CCG-III (0.5 mM) and dl-TBOA (0.5 mM) produced time-dependent (24–72 h) reductions in 3[H]d-Asp uptake (approximately 30–70%) with little or no gliotoxicity. All drugs induced a profound change in phenotype from cobblestone to stellate morphology and image analysis revealed increases in the intensity of GFAP immunolabelling for l-CCG-III and dl-TBOA. Cytochemistry indicated localized changes in F-actin distribution. Cell surface expression of EAAT2, but not EAAT1, was elevated at 72 h. Blockade of Glu uptake by both types of EAAT inhibitor exerts longer-term effects on astrocytic morphology and a compensatory homeostatic rise in EAAT2 abundance.  相似文献   

3.
To better understand the response of forest vegetation to climate and fire regimes with reference to human activities over the last deglacial period in the Aso Caldera, central Kyushu, southwestern Japan, a 33.9 m long sediment core was examined in order to reconstruct the vegetational and fire history using pollen and charcoal analyses. The results show that a cool temperate broad-leaved deciduous forest, dominated by Quercus (deciduous oaks) with Carpinus and Fagus, prevailed in the Aso Valley from ca. 14.6 ka cal. b.p., indicating warming since the last glacial period. The landscape was presumably covered by a mosaic of deciduous Quercus forests and terrestrial Artemisia communities. Around 12.8–11.7 ka cal. b.p., Quercus dominated the forest and fires occurred frequently. Co-expansion of distinctive UlmusZelkova and CeltisAphananthe forests coupled with a progressive retreat of Quercus in the early Holocene could reflect a strengthening of the East Asian summer monsoon under mild and humid climate conditions. Around 8 ka cal. b.p., significant increases in Cyclobalanopsis (evergreen oaks), Castanopsis/Castanea and Podocarpus indicate a further warming, in particular an increased winter temperature. Warm temperate lucidophyllous forests, dominated by Cyclobalanopsis, flourished after 7.3 ka cal. b.p., probably corresponding to the “Holocene Climatic Optimum” interval. Progressive expansion of Quercus at the expense of Cyclobalanopsis began around 6.4 ka cal. b.p. and paralleled an increase in charcoal until ca. 4.8 ka cal. b.p.; this could be evidence of fire disturbance induced by the early-middle Jomon people. The disturbed evergreen forest experienced a temporary recovery but then opened again from 3.6 ka cal. b.p. due to extensive fire deforestation, as suggested by the high charcoal levels during this time. Human exploitation and buckwheat (Fagopyrum) agriculture may have contributed to the opening of the forest, which allowed secondary forests (primarily Pinus and Quercus) and herbaceous communities (mainly Poaceae) to spread. These results are discussed in comparison with other high-resolution pollen data from western Japan to better elucidate the vegetation and fire history over the last deglacial in the Aso Caldera.  相似文献   

4.
In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22–25 % and a maximum temperature of 45–60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(l-Pro-l-Phe), cyclo(l-Pro-l-Leu), cyclo(l-Pro-l-isoLeu), and cyclo(l-Pro-d-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(l-Pro-l-Phe) and cyclo(l-Pro-l-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(l-Pro-l-Phe), cyclo(l-Pro-l-Leu), and cyclo(l-Pro-l-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.  相似文献   

5.
d-galactose is an attractive substrate for bioconversion. Herein, Escherichia coli was metabolically engineered to convert d-galactose into d-galactonate, a valuable compound in the polymer and cosmetic industries. d-galactonate productions by engineered E. coli strains were observed in shake flask cultivations containing 2 g L?1 d-galactose. Engineered E. coli expressing gld coding for galactose dehydrogenase from Pseudomonas syringae was able to produce 0.17 g L?1 d-galactonate. Inherent metabolic pathways for assimilating both d-galactose and d-galactonate were blocked to enhance the production of d-galactonate. This approach finally led to a 7.3-fold increase with d-galactonate concentration of 1.24 g L?1 and yield of 62.0 %. Batch fermentation in 20 g L?1 d-galactose of E. coli ?galK?dgoK mutant expressing the gld resulted in 17.6 g L?1 of d-galactonate accumulation and highest yield of 88.1 %. Metabolic engineering strategy developed in this study could be useful for industrial production of d-galactonate.  相似文献   

6.
Hepatopancreatic brush border membrane vesicles (BBMV), made from Atlantic White shrimp (Litopenaeus setiferus), were used to characterize the transport properties of 3H-l-leucine influx by these membrane systems and how other essential amino acids and the cations, sodium and potassium, interact with this transport system. 3H-l-leucine uptake by BBMV was pH-sensitive and occurred against transient transmembrane concentration gradients in both Na+- and K+-containing incubation media, suggesting that either cation was capable of providing a driving force for amino acid accumulation. 3H-l-leucine uptake in NaCl or KCl media were each three times greater in acidic pH (pH 5.5) than in alkaline pH (pH 8.5). The essential amino acid, l-methionine, at 20 mM significantly (p < 0.0001) inhibited the 2-min uptakes of 1 mM 3H-l-leucine in both Na+- and K+-containing incubation media. The residual 3H-l-leucine uptake in the two media were significantly greater than zero (p < 0.001), but not significantly different from each other (p > 0.05) and may represent an l-methionine- and cation-independent transport system. 3H-l-leucine influxes in both NaCl and KCl incubation media were hyperbolic functions of [l-leucine], following the carrier-mediated Michaelis–Menten equation. In NaCl, 3H-l-leucine influx displayed a low apparent K M (high affinity) and low apparent J max, while in KCl the transport exhibited a high apparent K M (low affinity) and high apparent J max. l-methionine or l-phenylalanine (7 and 20 mM) were competitive inhibitors of 3H-l-leucine influxes in both NaCl and KCl media, producing a significant (p < 0.01) increase in 3H-l-leucine influx K M, but no significant response in 3H-l-leucine influx J max. Potassium was a competitive inhibitor of sodium co-transport with 3H-l-leucine, significantly (p < 0.01) increasing 3H-l-leucine influx K M in the presence of sodium, but having negligible effect on 3H-l-leucine influx J max in the same medium. These results suggest that shrimp BBMV transport 3H-l-leucine by a single l-methionine- and l-phenylalanine-shared carrier system that is enhanced by acidic pH and can be stimulated by either Na+ or K+ acting as co-transport drivers binding to shared activator sites.  相似文献   

7.
d-Tagatose 3-epimerase family enzymes can efficiently catalyze the epimerization of free keto-sugars, which could be used for d-psicose production from d-fructose. In previous studies, all optimum pH values of these enzymes were found to be alkaline. In this study, a d-psicose 3-epimerase (DPEase) with neutral pH optimum from Clostridium bolteae (ATCC BAA-613) was identified and characterized. The gene encoding the recombinant DPEase was cloned and expressed in Escherichia coli. In order to characterize the catalytic properties, the recombinant DPEase was purified to electrophoretic homogeneity using nickel-affinity chromatography. Ethylenediaminetetraacetic acid was shown to inhibit the enzyme activity completely; therefore, the enzyme was identified as a metalloprotein that exhibited the highest activity in the presence of Co2+. Although the DPEase demonstrated the most activity at a pH ranging from 6.5 to 7.5, it exhibited optimal activity at pH 7.0. The optimal temperature for the recombinant DPEase was 55 °C, and the half-life was 156 min at 55 °C. Using d-psicose as the substrate, the apparent K m, k cat, and catalytic efficiency (k cat/K m) were 27.4 mM, 49 s?1, and 1.78 s?1 mM?1, respectively. Under the optimal conditions, the equilibrium ratio of d-fructose to d-psicose was 69:31. For high production of d-psicose, 216 g/L d-psicose could be produced with 28.8 % turnover yield at pH 6.5 and 55 °C. The recombinant DPEase exhibited weak-acid stability and thermostability and had a high affinity and turnover for the substrate d-fructose, indicating that the enzyme was a potential d-psicose producer for industrial production.  相似文献   

8.
Bifidobacterium longum NRRL B-41409 l-arabinose isomerase (l-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum l-AI were used for production of d-tagatose from d-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of d-galactose to d-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L?1 substrate and at 37.5 °C after 5 days. The d-tagatose production rate of 185 g L?1 day?1 was obtained at 300 g L?1 galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial d-tagatose production rate was 290 g L?1 day?1 under these conditions.  相似文献   

9.
Holocene mangrove dynamics are reconstructed from pollen, sediment and radiocarbon analyses of three cores (ANR, BNR, CNR) located across a 20 km transect in the Rufiji Delta, Tanzania. At the base of the sediment sequence, dated to about 5600 cal. year b.p., the mangroves which are present suggest a low intertidal ecosystem in response to wet conditions and a higher sea level than at the present day. After around 5600 cal. year b.p. in core BNR, mangroves retreated seaward probably due to a lower sea level and drier environmental conditions. At around 4640 cal. year b.p., mangroves shifted landward suggesting a phase of sea level rise. In the late Holocene, mangroves became established at higher elevations of the Rufiji Delta, which is now a paddy field. Mangrove taxa decreased after 1170 cal. year b.p., suggesting drier conditions and less inundation frequency, possibly due to a lower sea level. Marked vegetation changes from mangroves to terrestrial vegetation occurred after around 750 cal. year b.p., possibly related to sea level regression and/or a desiccation phase recorded during the late Holocene. Paddy fields replaced mangroves in the landward part of the transect, reflecting an increase in human settlement in this area, a trend that continues to the present day. The recent decrease of mangrove species, particularly Rhizophora mucronata, could suggest less inundation by saline water and a lower sea level, although these changes may also be due to human activities during the last millennia as indicated by charcoal analysis.  相似文献   

10.
l-Proline (pyrrolidine-2-carboxylic acid) is a distinctive metabolite both biochemically and biotechnologically and is currently recognized to have a cardinal role in gene expression and cellular signaling pathways in stress response. Proline-fueled mitochondrial metabolism involves the oxidative conversion of l-Proline to l-Glutamate in two enzymatic steps by means of Put1p and Put2p that help Saccharomyces cerevisiae to respond to changes in the nutritional environment by initiating the breakdown of l-Proline as a source for nitrogen, carbon, and energy. Compartmentalization of l-Proline catabolic pathway implies that extensive l-Proline transport must take place between the cytosol where its biogenesis via Pro1p, Pro2p, Pro3p occurs and mitochondria. l-Proline uptake in S. cerevisiae purified and active mitochondria was investigated by swelling experiments, oxygen uptake and fluorimetric measurement of a membrane potential generation (ΔΨ). Our results strongly suggest that l-Proline uptake occurs via a carried-mediated process as demonstrated by saturation kinetics and experiments with N-ethylmaleimide, a pharmacological compound that is a cysteine-modifying reagent in hydrophobic protein domains and that inhibited mitochondrial transport. Plasticity of S. cerevisiae cell biochemistry according to background fluctuations is an important factor of adaptation to stress. Thus l-Proline → Glutamate route feeds Krebs cycle providing energy and anaplerotic carbon for yeast survival.  相似文献   

11.
During l-glutamate production, phosphoenolpyruvate carboxylase and pyruvate carboxylase (PCx) play important roles in supplying oxaloacetate to the tricarboxylic acid cycle. To explore the significance of PCx for l-glutamate overproduction, the pyc gene encoding PCx was amplified in Corynebacterium glutamicum GDK-9 triggered by biotin limitation and CN1021 triggered by a temperature shock, respectively. In the fed-batch cultures, GDK-9pXMJ19pyc exhibited 7.4 % lower l-alanine excretion and no improved l-glutamate production. In contrast, CN1021pXMJ19pyc finally exhibited 13 % lower l-alanine excretion and identical l-glutamate production, however, 8.5 % higher l-glutamate production was detected during a short period of the fermentation. It was indicated that pyc overexpression in l-glutamate producer strains, especially CN1021, increased the supply of oxaloacetate for l-glutamate synthesis and decreased byproduct excretion at the pyruvate node.  相似文献   

12.
Four potential dehydrogenases identified through literature and bioinformatic searches were tested for l-arabonate production from l-arabinose in the yeast Saccharomyces cerevisiae. The most efficient enzyme, annotated as a d-galactose 1-dehydrogenase from the pea root nodule bacterium Rhizobium leguminosarum bv. trifolii, was purified from S. cerevisiae as a homodimeric protein and characterised. We named the enzyme as a l-arabinose/d-galactose 1-dehydrogenase (EC 1.1.1.-), Rl AraDH. It belongs to the Gfo/Idh/MocA protein family, prefers NADP+ but uses also NAD+ as a cofactor, and showed highest catalytic efficiency (k cat/K m) towards l-arabinose, d-galactose and d-fucose. Based on nuclear magnetic resonance (NMR) and modelling studies, the enzyme prefers the α-pyranose form of l-arabinose, and the stable oxidation product detected is l-arabino-1,4-lactone which can, however, open slowly at neutral pH to a linear l-arabonate form. The pH optimum for the enzyme was pH 9, but use of a yeast-in-vivo-like buffer at pH 6.8 indicated that good catalytic efficiency could still be expected in vivo. Expression of the Rl AraDH dehydrogenase in S. cerevisiae, together with the galactose permease Gal2 for l-arabinose uptake, resulted in production of 18 g of l-arabonate per litre, at a rate of 248 mg of l-arabonate per litre per hour, with 86 % of the provided l-arabinose converted to l-arabonate. Expression of a lactonase-encoding gene from Caulobacter crescentus was not necessary for l-arabonate production in yeast.  相似文献   

13.
Cystinuria is an autosomal recessive disease that causes l-cystine precipitation in urine and nephrolithiasis. Disease severity is highly variable; it is known, however, that cystinuria has a more severe course in males. The aim of this study was to compare l-cystine metastability in first-morning urine collected from 24 normal female and 24 normal male subjects. Samples were buffered at pH 5 and loaded with l-cystine (0.4 and 4 mM final concentration) to calculate the amount remaining in solution after overnight incubation at 4 °C; results were expressed as Z scores reflecting the l-cystine solubility in each sample. In addition, metabolomic analyses were performed to identify candidate compounds that influence l-cystine solubility. l-cystine solubility Z score was +0.44 ± 1.1 and ?0.44 ± 0.70 in female and male samples, respectively (p < 0.001). Further analyses showed that the l-cystine solubility was independent from urine concentration but was significantly associated with low urinary excretion of inosine (p = 0.010), vanillylmandelic acid (VMA) (p = 0.015), adenosine (p = 0.029), and guanosine (p = 0.032). In vitro l-cystine precipitation assays confirmed that these molecules induce higher rates of l-cystine precipitation in comparison with their corresponding dideoxy molecules, used as controls. In silico computational and modeling analyses confirmed higher binding energy of these compounds. These data indicate that urinary excretion of nucleosides and VMA may represent important factors that modulate l-cystine solubility and may represent new targets for therapy in cystinuria.  相似文献   

14.
Method of linear polarized vibrational (both IR- and Raman) spectroscopy of oriented colloids in nematic host is applied on N-acetyl-l-cysteine, l-cysteine, l-cystine and l-ascorbic acid with a view to obtain experimental bands assignment and local structural elucidation in solid-state. Structural results are compared with available crystallographic data for all of the systems studied. Scopes and limitations of the polarized method are shown. Discussion on the correlation between polarized spectroscopic data and the space group type as well as the number of the molecules in the unit cell (Z) is performed. Compounds with monoclinic space group P21, containing Z = 1 (N-acetyl-l-cysteine) and 2 (l-cysteine and l-ascorbic acid) are elucidated. One of the rare for organic molecules, hexagonal P6122 space group and Z = 6 (l-cystine) is also elucidated. Experimental assignment of the characteristics frequencies is obtained, explaining the typical for the crystals Fermi-resonance, Fermy–Davydov and Davydov splitting effects. For first time in the literature we are reported the orientation of the solid-mixture in nematic host, using the trade product ACC (Hexal, Germany), containing mainly N-acetyl-l-cysteine and l-ascorbic acid. Quantitative IR-spectroscopic approach for determination of solid mixtures is presented as well. The intensity ratio between 1,716 cm?1 (characteristic for N-acetyl-l-cysteine) and 990 cm?1, (attributed N-acethyl-cysteine and vitamin C) is used. Linear regression analysis between content and the peak ratio data for ten solid-binary mixtures, leads to straight-line plot y = 1.082 (±0.049) + (?0.114 ± 0.011)x, where x = 1/X i . Factor r of 0.9641 and a reliability of 98.85% are obtained. The analysis of ACC 200 (Hexal, Germany) show that the IR measurements leads to standard deviation of 0.010 and 0.011 at P about 0.0500 for the systems and a confidence of >98.771%.  相似文献   

15.
l-Arabinose isomerase (l-AI) catalyzes the isomerization of l-arabinose to l-ribulose and d-galactose to d-tagatose. Most reported l-AIs exhibit neutral or alkaline optimum pH, which is less beneficial than acidophilic ones in industrial d-tagatose production. Lactobacillus fermentum l-AI (LFAI) is a thermostable enzyme that can achieve a high conversion rate for d-galactose isomerization. However, its biocatalytic activity at acidic conditions can still be further improved. In this study, we report the single- and multiple-site mutagenesis on LFAI targeting three aspartic acid residues (D268, D269, and D299). Some of the lysine mutants, especially D268K/D269K/D299K, exhibited significant optimum pH shifts (from 6.5 to 5.0) and enhancement of pH stability (half-life time increased from 30 to 62 h at pH 6.0), which are more favorable for industrial applications. With the addition of borate, d-galactose was isomerized into d-tagatose by D268K/D269K/D299K at pH 5.0, resulting in a high conversion rate of 62 %. Based on the obtained 3.2-Å crystal structure of LFAI, the three aspartic acid residues were found to be distant from the active site and possibly did not participate in substrate catalysis. However, they were proven to possess similar optimum pH control ability in other l-AI, such as that derived from Escherichia coli. This study sheds light on the essential residues of l-AIs that can be modified for desired optimum pH and better pH stability, which are useful in d-tagatose bioproduction.  相似文献   

16.
3-O-β-d-Xylopyranosyl-l-serine (xylosylserine) was synthesized by the following three-step procedure: 1) 2,3,4-tri-O-benzoyl-α-d-xylopyranosyl bromide (benzobromoxylose) was condensed withN-carbobenzoxy-l-serine benzyl ester using the silver triflate-collidine complex as promoter; 2) theN-carbobenzoxy and benzyl ester groups in the resultant glycoside were cleaved by transfer hydrogenation with palladium black as catalyst and ammonium formate as hydrogen donor; and 3) the benzoyl groups were removed with methanolic ammonia. Xylosylserine was obtained in an overall yield of 70%. O-β-d-Galactopyranosyl-(1-4)-O-β-d-xylopyranosyl-(1-3)-l-serine (galactosylxylosylserine) was also synthesized by this methodology and was characterized by 2-dimensional (2D) NMR spectroscopy techniques. The two serine glycosides (xylosylserine and galactosylxylosylserine) were used in detection and partial purification of galactosyltransferase I (UDP-d-galactose:d-xylose galactosyltransferase) from adult rat liver.  相似文献   

17.
The effects of sodium, potassium, sugar inhibitors, and membrane potential on 3H-d-glucose uptake by hepatopancreatic epithelial brush border membrane vesicles (BBMV) of the Atlantic marine shrimp, Litopenaeus setiferus, were investigated. Brush border membrane vesicles were prepared using a MgCl2/EGTA precipitation method and uptake experiments were conducted using a high speed filtration technique. 3H-d-Glucose uptake was stimulated by both sodium and potassium and these transport rates were almost doubled in the presence of an inside-negative-induced membrane potential. Kinetics of 3H-d-glucose influx were hyperbolic functions of both external Na+ or K+, and an induced membrane potential increased influx J max and lowered Km in both salts. 3H-d-Glucose influx versus [glucose] in both Na+ or K+ media also displayed Michaelis–Menten properties that were only slightly affected by induced membrane potential. Phloridzin was a poor inhibitor of 0.5 mM 3H-d-glucose influx, requiring at least 5 mM in NaCl and 10 mM in KCl to significantly reduce hexose transport. Several sugars (d-galactose, α-methyl-d-gluco-pyranoside, unlabeled d-glucose, d-fructose, and d-mannose) were used at 75 mM as potential inhibitors of 0.1 mM 3H-d-glucose influx. Only unlabeled d-glucose, d-fructose, and d-mannose significantly (p < 0.05) reduced labeled glucose transport. An additional experiment using increasing concentrations of d-mannose (0, 10, 25, 75, and 100 mM) showed this hexose to be an effective inhibitor of 0.1 mM 3H-d-glucose uptake at concentrations of 75 mM and higher. As a whole these results suggest that 3H-d-glucose transport by hepatopancreatic BBMV occurs by a carrier system that is able to use both Na+ and K+ as drivers, is enhanced by membrane potential, is relatively refractory to phloridzin, and is only inhibited by itself, d-fructose, and d-mannose. These properties are similar to those exhibited by the mammalian SLC5A9/SGLT4 transporter, suggesting that an invertebrate analogue of this protein may occur in shrimp.  相似文献   

18.
Ethylene glycol (EG) is an important platform chemical with steadily expanding global demand. Its commercial production is currently limited to fossil resources; no biosynthesis route has been delineated. Herein, a biosynthesis route for EG production from d-xylose is reported. This route consists of four steps: d-xylose?→?d-xylonate?→?2-dehydro-3-deoxy-d-pentonate?→?glycoaldehyde?→?EG. Respective enzymes, d-xylose dehydrogenase, d-xylonate dehydratase, 2-dehydro-3-deoxy-d-pentonate aldolase, and glycoaldehyde reductase, were assembled. The route was implemented in a metabolically engineered Escherichia coli, in which the d-xylose?→?d-xylulose reaction was prevented by disrupting the d-xylose isomerase gene. The most efficient construct produced 11.7 g?L?1 of EG from 40.0 g?L?1 of d-xylose. Glycolate is a carbon-competing by-product during EG production in E. coli; blockage of glycoaldehyde?→?glycolate reaction was also performed by disrupting the gene encoding aldehyde dehydrogenase, but from this approach, EG productivity was not improved but rather led to d-xylonate accumulation. To channel more carbon flux towards EG than the glycolate pathway, further systematic metabolic engineering and fermentation optimization studies are still required to improve EG productivity.  相似文献   

19.
Whereas an abundance of literature is available on the occurrence of common proteinogenic amino acids (AAs) in edible fruits of the date palm (Phoenix dactylifera L.), recent reports on non-proteinogenic (non-coded) AAs and amino components are scarce. With emphasis on these components we have analyzed total hydrolysates of twelve cultivars of date fruits using automated ion-exchange chromatography, HPLC employing a fluorescent aminoquinolyl label, and GC–MS of total hydrolysates using the chiral stationary phases Chirasil®-L-Val and Lipodex® E. Besides common proteinogenic AAs, relatively large amounts of the following non-proteinogenic amino acids were detected: (2S,5R)-5-hydroxypipecolic acid (1.4–4.0 g/kg dry matter, DM), 1-aminocyclopropane-1-carboxylic acid (1.3–2.6 g/kg DM), γ-amino-n-butyric acid (0.5–1.2 g/kg DM), (2S,4R)-4-hydroxyproline (130–230 mg/kg DM), l-pipecolic acid (40–140 mg/kg DM), and 2-aminoethanol (40–160 mg/kg DM) as well as low or trace amounts (<70 mg/kg DM) of l-ornithine, 5-hydroxylysine, β-alanine, and in some samples (<20 mg/kg DM) of (S)-β-aminoisobutyric acid and (<10 mg/kg DM) l-allo-isoleucine. In one date fruit, traces of α-aminoadipic acid could be determined. Enantiomeric analysis of 6 M DCl/D2O hydrolysates of AAs using chiral capillary gas chromatography–mass spectrometry revealed the presence of very low amounts of d-Ala, d-Asp, d-Glu, d-Ser and d-Phe (1.2–0.4 %, relative to the corresponding l-enantiomers), besides traces (0.2–1 %) of other d-AAs. The possible relevance of non-proteinogenic amino acids in date fruits is briefly addressed.  相似文献   

20.
Three genera of lignicolousHyphomycetes Septonema Corda,Hormiactella Saac. andLylea Morgan-Jones are discussed. Illustrations and determination keys are provided. Five species ofSeptonema—S. fasciculare (Corda) Hughes,S. leptaleum (Ellis & Harkn.) Hughes,S. pinicola Hol.-Jech.,S. secedens Corda andS. laricium Hol.-Jech.—and two species ofHormiactella—H. fusca (Preuss) Sacc. andH. asetosa Hol.-Jech.—have been found in Czechoslovakia. A new speciesS. pseudobinum Hol.-Jech. is described from Romania.Septonema tetracoilum (Corda Hughes is accommodated in the genusLylea Morgan-Jones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号