首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
Consumer-resource stoichiometry in detritus-based streams   总被引:4,自引:0,他引:4  
Stoichiometric relationships between consumers and resources in detritus‐based ecosystems have received little attention, despite the importance of detritus in most food webs. We analysed carbon (C), nitrogen (N), and phosphorus (P) content of invertebrate consumers, and basal food resources in two forested headwater streams (one reference and the other nutrient‐enriched). We found large elemental imbalances between consumers and food resources compared with living plant‐based systems, particularly in regard to P content, which were reduced with enrichment. Enrichment significantly increased nutrient content of food resources (consistent with uptake of N and P by detritus‐associated microbes). P content of some invertebrates also increased in the enriched vs. reference stream, suggesting deviation from strict homeostasis. Nutrient content varied significantly among invertebrate functional feeding groups, orders and, to some extent, size classes. Future application of stoichiometric theory to detritus‐based systems should consider the potential for relatively large consumer‐resource elemental imbalances and P storage by insect consumers.  相似文献   

2.
3.
1. Ecological stoichiometry has been used to better understand dynamics in consumer growth and the role of consumer‐recycled nutrients because it focuses on more than one element. Most research has focused on pelagic rather than benthic consumers. Variation in elemental composition among benthic consumer taxa would suggest that taxa differ in their susceptibility to nutrient limitation or in their role in recycling nutrients. 2. We collected benthic macroinvertebrates from streams in two regions (Indiana–Michigan and Wisconsin, U.S.A.) to examine taxonomic and regional variation in benthic macroinvertebrate body carbon (C), nitrogen (N), and phosphorus (P) concentrations and ratios. 3. Elemental composition varied little within taxa common to both regions. In contrast, elemental composition differed greatly among taxa and appeared to be related to phylogeny. The elemental composition of macroinvertebrates clustered into three distinct groups: insects, mollusks, and crustaceans. To a lesser extent, insects and mollusks also differed in elemental composition among genera. 4. Functional feeding groups (FFGs) differed in elemental composition, with predators having a higher N content than other groups. Substantial elemental imbalances between C and N were found between most primary consumers and their likely food sources, and the magnitude of the imbalance depended in part on the FFG. 5. Our results support an assumption of most ecological stoichiometry models that, within a species, the elemental composition of aquatic invertebrates is relatively constant. Variation in elemental composition among taxa at various higher taxonomic levels suggests that susceptibility of stream invertebrates to nutrient limitation and their role in nutrient cycling will strongly depend on phylogeny.  相似文献   

4.
Seabirds deposit large amounts of nutrient rich guano on their nesting islands. The increased nutrient availability strongly affects plants and consumers. Consumer response differs among taxonomic groups, but mechanisms causing these differences are poorly understood. Ecological stoichiometry might provide tools to understand these mechanisms. ES suggests that nutrient rich taxa are more likely to be nutrient limited than nutrient poorer taxa and are more favored under nutrient enrichment. Here, we quantified differences in the elemental composition of soil, plants, and consumers between islands with and without nesting cormorant colonies and tested predictions made based on ES by relating the elemental composition and the eventual mismatch between consumer and resource stoichiometry to observed density differences among the island categories. We found that nesting cormorants radically changed the soil nutrient content and thereby indirectly plant nutrient content and resource quality to herbivores. In contrast, consumers showed only small differences in their elemental composition among the island categories. While we cannot evaluate the cause of the apparent homeostasis of invertebrates without additional data, we can conclude that from the perspective of the next trophic level, there is no difference in diet quality (in terms of N and P content) between island categories. Thus, bottom-up effects seemed mainly be mediated via changes in resource quantity not quality. Despite a large potential trophic mismatch we were unable to observe any relation between the invertebrate stoichiometry and their density response to nesting cormorant colonies. We conclude that in our system stoichiometry is not a useful predictor of arthropod responses to variation in resource nutrient content. Furthermore, we found no strong evidence that resource quality was a prime determinant of invertebrate densities. Other factors like resource quantity, habitat structure and species interactions might be more important or masked stoichiometric effects.  相似文献   

5.
The isotopic (δ13C and δ15N) and stoichiometric (C:N:P) compositions of four fish species (Family Centrarchidae: Lepomis auritus, Lepomis cyanellus; Family Cyprinidae: Nocomis leptocephalus, Semotilus atromaculatus) were examined across four North Carolina Piedmont streams arrayed along an urbanization gradient. Both isotopic and stoichiometric composition of fishes appeared to track changes occurring in basal resource availability. Values of δ13C of basal resources and consumers were more enriched at the most urbanized streams. Similarly, basal resources and consumers were δ15N–enriched at more urbanized streams. Basal resource stoichiometry varied across streams, with periphyton being the most variable. Primary consumers stoichiometry also differed across streams. Intraspecific variation in fish stoichiometry correlated with the degree of urbanization, as the two cyprinids had higher N content and L. cyanellus had higher P content in more urbanized streams, probably due to enrichment of basal resources. Intrinsic factors, specifically species identity and body size also affected stoichiometric variation. Phosphorus (P) content increased significantly with body size in centrarchids, but not in cyprinids. These results suggest that although species identity and body size are important predictors of elemental stoichiometry, the complex nature of altered urban streams may yield imbalances in the elemental composition of consumers via their food resources.  相似文献   

6.
Many ecosystems rely on subsidies of carbon and nutrients from surrounding environments. In headwater streams that are heavily shaded by riparian forests, allochthonous inputs from terrestrial systems often comprise a major part of the organic matter budget. Bacteria play a key role in organic matter cycling in streams, but there is limited evidence about how much bacterial carbon is actually assimilated by invertebrate and fish consumers, and how bacterial carbon assimilation varies among streams. We conducted stable isotope tracer additions of 13C-acetate, that is assimilated only by bacteria, and 15N-ammonium, that is assimilated by both bacteria and algae, in two small, shaded streams in the Adirondack region of New York State, USA. Our goal was to determine whether there is an important trophic link between bacteria and macroconsumers, and whether the link changes when the light environment is experimentally altered. In 2009, we evaluated bacterial carbon use in both streams with natural canopy cover using 10-day dual-isotope tracer releases. The canopy was then thinned in one stream to increase light availability and primary production and tracer experiments were repeated in 2010. As part of the tracer experiments, we developed a respiration assay to measure the δ 13C content of live bacteria, which provided critical information for determining how much of the carbon assimilated by invertebrate consumers is from bacterial sources. Some invertebrate taxa, including scraper mayflies (Heptagenia spp.) that feed largely on biofilms assimilated over 70% of their carbon from bacterial sources, whereas shredder caddisflies (Pycnopsyche spp.) that feed on decomposing leaves assimilated less than 1% of their carbon from bacteria. Increased light availability led to strong declines in the magnitude of bacterial carbon fluxes to different consumers (varying from ?17 to ?91% decrease across invertebrate taxa), suggesting that bacterial energy assimilation differs not only among consumer taxa but also within the same consumer taxa in streams with different ecological contexts. Our results demonstrate that fluxes of bacterial carbon to higher trophic levels in streams can be substantial, that is over 70% for some taxa, but that invertebrate taxa vary considerably in their reliance on bacterial carbon, and that local variation in carbon sources controls how much bacterial carbon invertebrates use.  相似文献   

7.
Ecological stoichiometry seeks to understand the ecological consequences of elemental imbalances between consumers and their resources. Therein, the well-accepted growth rate hypothesis (GRH) states that organisms exhibiting rapid growth have higher phosphorus (P) demand – and thus lower C:P and N:P ratios – than slow growing ones, due to a higher allocation to P-rich rRNA. However, GRH has rarely been extended to other biological traits than growth, especially at the community level. In this study, we investigated whether macroinvertebrate stoichiometric traits (e.g. C:P and N:P ratios) can be linked to their development traits, and whether these stoichiometric traits are related to macroinvertebrate community assemblage under different nutrient conditions. We allocated more than 400 European taxa to different groups, defined using available information about three development-related traits: ‘life span', ‘voltinism' and ‘number of reproductive cycles per individual'. We sampled 18 invertebrate taxa in six streams exhibiting different levels of nutrient concentration and measured their stoichiometric traits. Further, we quantified invertebrate taxon abundances in these streams during an annual survey. Based on these data, we tested whether community composition regarding the developmental groups differs, depending on nutrient concentration. We found significant differences in the proportions of the developmental groups along a gradient of water N:P, in relation to their stoichiometric traits. Taxa with low C:P and N:P ratios were generally associated with faster development groups, and these taxa tended to occur at higher proportions in streams exhibiting low dissolved N:P ratios. In contrast, communities from P-poor, high dissolved N:P streams, were dominated by slowly developing taxa with high N:P ratios. Our results highlight that extending the GRH to species development rate might give some insights about the mechanisms by which nutrient concentrations in ecosystems influence consumers' community composition.  相似文献   

8.
1. Anthropogenic activities in prairie streams are increasing nutrient inputs and altering stream communities. Understanding the role of large consumers such as fish in regulating periphyton structure and nutritional content is necessary to predict how changing diversity will interact with nutrient enrichment to regulate stream nutrient processing and retention. 2. We characterised the importance of grazing fish on stream nutrient storage and cycling following a simulated flood under different nutrient regimes by crossing six nutrient concentrations with six densities of a grazing minnow (southern redbelly dace, Phoxinus erythrogaster) in large outdoor mesocosms. We measured the biomass and stoichiometry of overstory and understory periphyton layers, the stoichiometry of fish tissue and excretion, and compared fish diet composition with available algal assemblages in pools and riffles to evaluate whether fish were selectively foraging within or among habitats. 3. Model selection indicated nutrient loading and fish density were important to algal composition and periphyton carbon (C): nitrogen (N). Nutrient loading increased algal biomass, favoured diatom growth over green algae and decreased periphyton C : N. Increasing grazer density did not affect biomass and reduced the C : N of overstory, but not understory periphyton. Algal composition of dace diet was correlated with available algae, but there were proportionately more diatoms present in dace guts. We found no correlation between fish egestion/excretion nutrient ratios and nutrient loading or fish density despite varying N content of periphyton. 4. Large grazers and nutrient availability can have a spatially distinct influence at a microhabitat scale on the nutrient status of primary producers in streams.  相似文献   

9.
The elemental composition of animals, or their organismal stoichiometry, is thought to constrain their contribution to nutrient recycling, their interactions with other animals, and their demographic rates. Factors that affect organismal stoichiometry are generally poorly understood, but likely reflect elemental investments in morphological features and life history traits, acting in concert with the environmental availability of elements. We assessed the relative contribution of organismal traits and environmental variability to the stoichiometry of an insectivorous Neotropical stream fish, Rivulus hartii. We characterized the influence of body size, life history phenotype, stage of maturity, and environmental variability on organismal stoichiometry in 6 streams that differ in a broad suite of environmental variables. The elemental composition of R. hartii was variable, and overlapped with the wide range of elemental composition documented across freshwater fish taxa. Average %P composition was ~3.2%(±0.6), average %N~10.7%(±0.9), and average %C~41.7%(±3.1). Streams were the strongest predictor of organismal stoichiometry, and explained up to 18% of the overall variance. This effect appeared to be largely explained by variability in quality of basal resources such as epilithon N:P and benthic organic matter C:N, along with variability in invertebrate standing stocks, an important food source for R. hartii. Organismal traits were weak predictors of organismal stoichiometry in this species, explaining when combined up to 7% of the overall variance in stoichiometry. Body size was significantly and positively correlated with %P, and negatively with N:P, and C:P, and life history phenotype was significantly correlated with %C, %P, C:P and C:N. Our study suggests that spatial variability in elemental availability is more strongly correlated with organismal stoichiometry than organismal traits, and suggests that the stoichiometry of carnivores may not be completely buffered from environmental variability. We discuss the relevance of these findings to ecological stoichiometry theory.  相似文献   

10.
This study aimed to determine the variability of carbon and nitrogen elemental content, stoichiometry and diet proportions of invertebrates in two sub-tropical estuaries in South Africa experiencing seasonal changes in rainfall and river inflow. The elemental ratios and stable isotopes of abiotic sources, zooplankton and macrozoobenthos taxa were analyzed over a dry/wet seasonal cycle. Nutrient content (C, N) and stoichiometry of suspended particulate matter exhibited significant spatio-temporal variations in both estuaries, which were explained by the variability in river inflow. Sediment particulate matter (%C, %N and C:N) was also influenced by the variability in river flow but to a lesser extent. The nutrient content and ratios of the analyzed invertebrates did not significantly vary among seasons with the exception of the copepod Pseudodiaptomus spp. (C:N) and the tanaid Apseudes digitalis (%N, C:N). These changes did not track the seasonal variations of the suspended or sediment particulate matter. Our results suggest that invertebrates managed to maintain their stoichiometry independent of the seasonality in river flow. A significant variability in nitrogen content among estuarine invertebrates was recorded, with highest % N recorded from predators and lowest %N from detritivores. Due to the otherwise general lack of seasonal differences in elemental content and stoichiometry, feeding guild was a major factor shaping the nutrient dynamics of the estuarine invertebrates. The nutrient richer suspended particulate matter was the preferred food source over sediment particulate matter for most invertebrate consumers in many, but not all seasons. The most distinct preference for suspended POM as a food source was apparent from the temporarily open/closed system after the estuary had breached, highlighting the importance of river flow as a driver of invertebrate nutrient dynamics under extreme events conditions. Moreover, our data showed that estuarine invertebrates concentrated C and N between 10–100 fold from trophic level I (POM) to trophic level II (detritivores/deposit feeders) and thus highlighted their importance not only as links to higher trophic level organisms in the food web, but also as providers of a stoichiometrically homeostatic food source for such consumers. As climate change scenarios for the east coast of South Africa predict increased rainfall as a higher number of rainy days and days with higher rainfall, our results suggest that future changes in rainfall and river inflow will have measurable effects on the nutrient content and stoichiometry of food sources and possibly also in estuarine consumers.  相似文献   

11.
A central premise of ecological stoichiometry is that consumers maintain relatively fixed elemental composition in their bodies, a process known as elemental homoeostasis. Although nutrient enrichment is a ubiquitous problem facing many freshwater lakes around the world, intraspecific variation in elemental composition of freshwater invertebrates and its relationship with nutrient loading have not been well addressed. Here, we examined carbon:nitrogen:phosphorus (C:N:P) stoichiometry of two widely distributed molluscs, Corbicula fluminea and Bellamya aeruginosa, from several subtropical shallow lakes across a nutrient gradient. Our results showed that these two species exhibited substantial natural intraspecific variation in tissue stoichiometry which can reach or even exceed the values among different freshwater taxa investigated before. Our results suggest that tissue P content presents the greatest variations, followed by N content, and lowest in C content. Tissue P content ranged about three-fold (0.56%–1.65%) and five-fold (0.41%–2.28%) for B. aeruginosa and C. fluminea, respectively. Correspondingly, N content ranged from 5.16% to 12.06% and from 6.47 to 11.36%, respectively. Tissue %P, C:P and N:P ratios were strongly correlated with PO43−-P and/or chlorophyll-a in the water column. Tissue N and P contents of B. aeruginosa and P content of C. fluminea increased with increasing lake trophic levels (mesotrophic to eutrophic to hypertrophic). These results suggest that the two molluscs can adjust their tissue stoichiometry in relation to nutrient enrichment. Relaxing the assumption of strict homeostasis may help them cope with potential stoichiometric constraints. The results provide additional clues to why these two species are successful invaders and widely distributed.  相似文献   

12.
1. Resource quality and stoichiometric imbalances in carbon : nutrient ratios between consumers and resources can influence key ecosystem processes. In many streams, this has important implications for food webs that are based largely upon the utilization of terrestrial leaf‐litter, which varies widely among litter types in its value as a food source for detritivores and as a substrate for microbial decomposers. 2. We measured breakdown rates and macroinvertebrate colonization of leaf‐litter from a range of native and exotic plants of differing resource quality and palatability to consumers [e.g. carbon : nitrogen : phosphorus (C : N : P) ratios, lignin and cellulose content], in a field experiment. We also measured C : N : P ratios of the principal leaf‐shredding invertebrates, which revealed strong stoichiometric imbalances across trophic levels: C : N and C : P ratios typically differed by at least one order of magnitude between consumers and resources, whereas N : P imbalances were less marked. Application of the threshold elemental ratio approach, which integrates animal bioenergetics and body elemental composition in examining nutrient deficiency between consumers and resources, revealed less marked C : P imbalances than those based on the simpler arithmetic differences described above. 3. Litter breakdown rates declined as nutrient imbalances widened and resource quality fell, but they were independent of whether resources were exotic or native. The principal drivers of total, microbial and invertebrate‐mediated breakdown rates were lignin : N, lignin : P and fungal biomass, respectively. However, multiple regression using orthogonal predictors yielded even more efficient models of litter breakdown, as consumers responded to more than one aspect of resource quality. For example, fungal biomass and litter C : N both influenced invertebrate‐mediated breakdown. 4. Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora. Consequently, the magnitude and direction of change in breakdown rates and, thus, resource depletion, will be driven to a large extent by the biochemical traits (rather than taxonomic identity per se) of the resident and invading flora.  相似文献   

13.
Threshold elemental ratios of carbon and phosphorus in aquatic consumers   总被引:3,自引:0,他引:3  
Inadequate supply of one or more mineral elements can slow the growth of animal consumers and alter their physiology, life history and behaviour. A key concept for understanding nutrient deficiency in animals is the threshold elemental ratio (TER), at which growth limitation switches from one element to another. We used a stoichiometric model that coupled animal bioenergetics and body elemental composition to estimate TER of carbon and phosphorus (TERC:P) for 41 aquatic consumer taxa. We found a wide range in TERC:P (77–3086, ratio by atoms), which was generated by interspecific differences in body C : P ratios and gross growth efficiencies of C. TERC:P also varied among aquatic invertebrates having different feeding strategies, such that detritivores had significantly higher threshold ratios than grazers and predators. The higher TERC:P in detritivores resulted not only from lower gross growth efficiencies of carbon but also reflected lower body P content in these consumers. Supporting previous stoichiometric theory, we found TERC:P to be negatively correlated with the maximum growth rate of invertebrate consumers. By coupling bioenergetics and stoichiometry, this analysis revealed strong linkages among the physiology, ecology and evolution of nutritional demands for animal growth.  相似文献   

14.
Stoichiometric ratios of resources and consumers have been used to predict nutrient limitation across diverse terrestrial and aquatic ecosystems. In forested headwater streams, coarse and fine benthic organic matter (CBOM, FBOM) are primary basal resources for the food web, and the distribution and quality of these organic matter resources may therefore influence patterns of secondary production and nutrient cycling within stream networks or among biomes. We measured carbon (C), nitrogen (N), and phosphorus (P) content of CBOM and FBOM and calculated their stoichiometric ratios (C/N, C/P, N/P) from first- to fourth-order streams from tropical montane, temperate deciduous, and boreal forests, and tallgrass prairie, to compare the magnitude and variability of these resource types among biomes. We then used the ratios to predict nutritional limitations for consumers of each resource type. Across biomes, CBOM had consistently higher %C and %N, and higher and more variable C/N and C/P than FBOM, suggesting that microbial processing results in more tightly constrained elemental composition in FBOM than in CBOM. Biome-specific differences were observed in %P and N/P between the two resource pools; CBOM was lower in %P but higher in N/P than FBOM in the tropical montane and temperate deciduous forest biomes, while CBOM was higher in %P but similar in N/P than FBOM in the grassland and boreal forest biomes. Stable 13C isotopes suggest that FBOM likely derives from CBOM in tropical and temperate deciduous forest, but that additional non-detrital components may contribute to FBOM in boreal forests and grasslands. Comparisons of stoichiometric ratios of CBOM and FBOM to estimated needs of aquatic detritivores suggest that shredders feeding on CBOM are more likely to experience nutrient (N and/or P) than C limitation, whereas collector–gatherers consuming FBOM are more likely to experience C than N and/or P limitation. Our results suggest that differences in basal resource elemental content and stoichiometric ratios have the potential to affect consumer production and ecosystem rates of C, N, and P cycling in relatively consistent ways across diverse biomes.  相似文献   

15.
We measured the elemental content (%C, N and P) and ratios (C:N, C:P, N:P) of a diverse assemblage of parasitic helminths to ask whether taxonomy or traits were related to stoichiometric variation among species. We sampled 27 macroparasite taxa, spanning four phyla, infecting vertebrate and invertebrate hosts from freshwater ecosystems in New Jersey. Macroparasites varied widely in elemental content, exhibiting 4.7‐fold variation in %N, 4.6‐fold variation in %P, and 11.5‐fold variation in N:P. Across all species, parasite %P scaled negatively and C:P scaled positively with body size. Similar relationships between parasite P content and body size occurred at the phylum level and within individual species. The allometric scaling of P across species supports the growth rate hypothesis, which predicts that smaller taxa require more P to support relatively higher growth rates. Life cycle stage was related to %N and C:N, with non‐reproductive parasite stages lower in %N and higher in C:N than actively reproducing parasites. Parasite phylum, functional feeding group, and trophic level did not explain elemental variation among species. Organismal stoichiometry is linked to ecological function, and wide variation in macroparasite stoichiometry likely generates diverse patterns in host–parasite nutrient dynamics and variable relationships between parasitism and nutrient cycling.  相似文献   

16.
17.
浮游动物化学计量学稳态性特征研究进展   总被引:5,自引:1,他引:4  
苏强 《生态学报》2012,32(22):7213-7219
稳态性是有机体的基本属性,也是生态化学计量学理论成立的前提和基础。一般来讲,浮游植物的元素组成变化较大,而浮游动物具有明显的稳态性特征。浮游动物稳态性特征的研究不仅有助于了解水生生态系统的能量流动和物质循环,同时也对研究营养元素如何调节生物生长、繁殖和代谢起到促进作用。在综述生态化学计量学研究的基础上,主要介绍了稳态性的概念和浮游动物稳态性特征的基本框架及变化规律,以期为促进国内相关研究工作的开展提供参考。  相似文献   

18.
Key processes such as trophic interactions and nutrient cycling are often influenced by the element content of organisms. Previous analyses have led to some preliminary understanding of the relative importance of evolutionary and ecological factors determining animal stoichiometry. However, to date, the patterns and underlying mechanisms of consumer stoichiometry at interspecific and intraspecific levels within natural ecosystems remain poorly investigated. Here, we examine the association between phylogeny, trophic level, body size, and ontogeny and the elemental composition of 22 arthropod as well as two lizard species from the coastal zone of the Atacama Desert in Chile. We found that, in general, whole‐body P content was more variable than body N content both among and within species. Body P content showed a significant phylogenetic signal; however, phylogeny explained only 4% of the variation in body P content across arthropod species. We also found a significant association between trophic level and the element content of arthropods, with carnivores having 15% greater N and 70% greater P contents than herbivores. Elemental scaling relationships across species were only significant for body P content, and even the P content scaling relationship was not significant after controlling for phylogeny. P content did decrease significantly with body size within most arthropod species, which may reflect the size dependence of RNA content in invertebrates. In contrast, larger lizards had higher P contents and lower N:P ratios than smaller lizards, which may be explained by size‐associated differences in bone and scale investments. Our results suggests that structural differences in material allocation, trophic level and phylogeny can all contribute to variation in the stoichiometry of desert consumers, and they indicate that the elemental composition of animals can be useful information for identifying broad‐scale linkages between nutrient cycling and trophic interactions in terrestrial food webs.  相似文献   

19.
1. Aquatic herbivores typically have much higher concentrations of nutrients (e.g. N and P) in their tissues than there is in the food they eat. These stoichiometric differences can cause herbivores to be limited by the elemental quality of their food, which could affect, in turn, the structure of consumer communities and even alter key ecosystem processes. 2. In streams and in the littoral zone of shallow lakes, periphyton is an important food resource for benthic animals. Studying the elemental composition of periphyton may help us to understand food‐web structure, and any reciprocal effect of this structure on periphyton stoichiometry. 3. To understand how alterations in the food‐web structure affect the elemental composition of periphyton in a eutrophic lake, we carried out a long‐term experiment (14 months) in large‐scale mesocosms (40 m3), in which we manipulated food‐web structure, and which were dominated either by planktivorous fish (Rutilus rutilus) or herbivorous invertebrates (without fish). Periphyton was sampled monthly at three depths (0.5, 1.5 and 2.5 m) to determine its biomass and elemental composition (C/N/P ratio). Food‐web structure, physical and chemical parameters were monitored throughout the experiment. 4. Fish had indirect positive effect on periphyton biomass, leading to twofold higher levels than in herbivore‐dominated mesocosms. This result was probably due to control of benthic consumers by fish, suggesting a strong top–down control on periphyton by their consumers in fishless enclosures. 5. The elemental ratios C/P and C/N were lower in deep water in both treatments, mainly mediated by light availability, in accordance with the light/nutrient ratio hypothesis. These ratios were also lower in fishless treatments, probably due to increases in inorganic nutrient availability and grazing pressure in herbivore‐dominated systems. During winter, periphyton elemental composition was similar in both treatments, and was unrelated to inorganic nutrient availability. 6. These results indicate that any alteration of food‐web structure in lakes, such as in biomanipulation experiments, is likely to modify both the biomass and elemental quality of periphyton. Resultant effects on the consumers of periphyton and macrophytes could play a key role in the success of biomanipulations and should be taken into account in further studies.  相似文献   

20.
Stoichiometric constraints within ecological interactions and their ecosystem consequences may depend on characteristics of the abiotic environment such as background nutrient levels. We assessed whether consumer identity, via differing body stoichiometry, could regulate periphyton stoichiometry across nutrient regimes in open systems. In 60 flow-through artificial streams, we factorially crossed dissolved inorganic nitrogen levels (elevated = 294  μ g L−1, ambient = 26  μ g L−1) with dissolved inorganic phosphorus levels (DIP: elevated = 15  μ g L−1, ambient = 3  μ g L−1) and consumer type [crayfish (body N : P = 18), snails (body N : P = 28) or a control]. At ambient DIP, periphyton in the crayfish treatment had a lower %P and a lower C : P than periphyton in the snail treatment suggesting that consumer identity, probably mediated by differing P-excretion, regulated periphyton P content. At high DIP, consumer identity no longer affected periphyton elemental composition. Therefore, the stoichiometry of consumer-driven nutrient recycling and consumer identity may be less important to ecosystem functioning in environments with elevated nutrient levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号