首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Linking spatial variation in environmental factors to variation in demographic rates is essential for a mechanistic understanding of the dynamics of populations. However, we still know relatively little about such links, partly because feedbacks via intraspecific density make them difficult to observe in natural populations. We conducted a detailed field study and investigated simultaneous effects of environmental factors and the intraspecific density of individuals on the demography of the herb Lathyrus vernus. In regression models of vital rates we identified effects associated with spring shade on survival and growth, while density was negatively correlated with these vital rates. Density was also negatively correlated with average individual size in the study plots, which is consistent with self-thinning. In addition, average plant sizes were larger than predicted by density in plots that were less shaded by the tree canopy, indicating an environmentally determined carrying capacity. A size-structured integral projection model based on the vital rate regressions revealed that the identified effects of shade and density were strong enough to produce differences in stable population sizes similar to those observed in the field. The results illustrate how the local environment can determine dynamics of populations and that intraspecific density may have to be more carefully considered in studies of plant demography and population viability analyses of threatened species. We conclude that demographic approaches incorporating information about both density and key environmental factors are powerful tools for understanding the processes that interact to determine population dynamics and abundances.  相似文献   

2.
1.  Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity.
2.  We analyse a stochastic environment model of the red kangaroo ( Macropus rufus ), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates.
3.  Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate.
4.  Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates.
5.  Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c . 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c . 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.  相似文献   

3.
Demographic models provide insight into which vital rates and life stages contribute most to population growth. Integral projection models (IPMs) offer flexibility in matching model structure to a species’ demography. For many rare species, data are lacking for key vital rates, and uncertainty might dissuade researchers from attempting to build a demographic model. We present work that highlights how the implications of uncertainties and unknowns can be explored by building and analyzing alternative models. We constructed IPMs for the threatened giant gartersnake (Thamnophis gigas) based on published studies to determine where management efforts could be targeted to have the greatest effect on population persistence and what unknowns remain for future research. Given uncertainty in the survival of snakes during their first year, and in the form of the size-survival relationship, we modeled a range of scenarios and evaluated where models agree about factors influencing population growth and where discrepancies exist. For most scenarios, the survival of large adult females had the greatest influence on population growth, but the relative importance of juvenile versus adult somatic growth for population growth was dependent on the recruitment probability and the shape of the size-survival function. More data on temporal variation and covariance among vital rates would improve stochastic models for the giant gartersnake. This paper demonstrates the effectiveness of IPMs for studying the demography of reptiles and the value of the model-building process for formalizing what is known and unknown about the demography of rare species. Published 2019. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

4.
The impact of mutualists on a partner’s demography depends on how they affect the partner’s multiple vital rates and how those vital rates, in turn, affect population growth. However, mutualism studies rarely measure effects on multiple vital rates or integrate them to assess the ultimate impact on population growth. We used vital rate data, population models and simulations of long-term population dynamics to quantify the demographic impact of a guild of ant species on the plant Ferocactus wislizeni. The ants feed at the plant’s extrafloral nectaries and attack herbivores attempting to consume reproductive organs. Ant-guarded plants produced significantly more fruit, but ants had no significant effect on individual growth or survival. After integrating ant effects across these vital rates, we found that projected population growth was not significantly different between unguarded and ant-guarded plants because population growth was only weakly influenced by differences in fruit production (though strongly influenced by differences in individual growth and survival). However, simulations showed that ants could positively affect long-term plant population dynamics through services provided during rare but important events (herbivore outbreaks that reduce survival or years of high seedling recruitment associated with abundant precipitation). Thus, in this seemingly clear example of mutualism, the interaction may actually yield no clear benefit to plant population growth, or if it does, may only do so through the actions of the ants during rare events. These insights demonstrate the value of taking a demographic approach to studying the consequences of mutualism.  相似文献   

5.
1. Life-history theory predicts that those vital rates that make larger contributions to population growth rate ought to be more strongly buffered against environmental variability than are those that are less important. Despite the importance of the theory for predicting demographic responses to changes in the environment, it is not yet known how pervasive demographic buffering is in animal populations because the validity of most existing studies has been called into question because of methodological deficiencies. 2. We tested for demographic buffering in the southern-most breeding mammal population in the world using data collected from 5558 known-age female Weddell seals over 30 years. We first estimated all vital rates simultaneously with mark-recapture analysis and then estimated process variance and covariance in those rates using a hierarchical Bayesian approach. We next calculated the population growth rate's sensitivity to changes in each of the vital rates and tested for evidence of demographic buffering by comparing properly scaled values of sensitivity and process variance in vital rates. 3. We found evidence of positive process covariance between vital rates, which indicates that all vital rates are affected in the same direction by changes in annual environment. Despite the positive correlations, we found strong evidence that demographic buffering occurred through reductions in variation in the vital rates to which population growth rate was most sensitive. Process variation in vital rates was inversely related to sensitivity measures such that variation was greatest in breeding probabilities, intermediate for survival rates of young animals and lowest for survival rates of older animals. 4. Our work contributes to a small but growing set of studies that have used rigorous methods on long-term, detailed data to investigate demographic responses to environmental variation. The information from these studies improves our understanding of life-history evolution in stochastic environments and provides useful information for predicting population responses to future environmental change. Our results for an Antarctic apex predator also provide useful baselines from a marine ecosystem when its top- and middle-trophic levels were not substantially impacted by human activity.  相似文献   

6.
Recent advances in stochastic demography provide unique insights into the probable effects of increasing environmental variability on population dynamics, and these insights can be substantially different compared with those from deterministic models. Stochastic variation in structured population models influences estimates of population growth rate, persistence and resilience, which ultimately can alter community composition, species interactions, distributions and harvesting. Here, we discuss how understanding these demographic consequences of environmental variation will have applications for anticipating changes in populations resulting from anthropogenic activities that affect the variance in vital rates. We also highlight new tools for anticipating the consequences of the magnitude and temporal patterning of environmental variability.  相似文献   

7.
Understanding the ability of plants to spread is important for assessing conservation strategies, landscape dynamics, invasiveness and ability to cope with climate change. While long‐distance seed dispersal is often viewed as a key process in population spread, the importance of inter‐specific variation in demography is less explored. Indeed, the relative importance of demography vs seed dispersal in determining population spread is still little understood. We modelled species’ potential for population spread in terms of annual migration rates for a set of species inhabiting dry grasslands of central Europe. Simultaneously, we estimated the importance of demographic (population growth rate) versus long‐distance dispersal (99th percentile dispersal distance) characteristics for among‐species differences in modelled population spread. In addition, we assessed how well simple proxy measures related to demography (the number and survival of seedlings, the survival of flowering individuals) and dispersal (plant height, terminal velocity and wind speed during dispersal) predicted modelled spread rates. We found that species’ demographic rates were the more powerful predictors of species’ modelled potential to spread than dispersal. Furthermore, our simple proxies were correlated with modelled species spread rates and together their predictive power was high. Our findings highlight that for understanding variation among species in their potential for population spread, detailed information on local demography and dispersal might not always be necessary. Simple proxies or assumptions that are based primarily on species demography could be sufficient.  相似文献   

8.
The understanding of how variation of demographic rates translates into variation of population growth is a central aim in population ecology. Besides stochastic and deterministic factors, the spatial extent and the isolation of a local population may have an impact on the contribution of the different demographic components. Using long-term demographic data we performed retrospective population analyses of four little owl ( Athene noctua ) populations with differential spatial extent and degree of isolation to assess the contribution of demographic rates to the variation of the growth rate (λ) of each local population and to the difference of λ among populations. In all populations variation of fecundity contributed least to variation of λ, and variation of adult survival contributed most to variation of λ in three of four populations. Between population comparisons revealed that differences mainly stem from differences of immigration and juvenile local survival. The relative importance of immigration to λ tended to decrease with increasing spatial extent and isolation of the local populations. None of the four local populations was self-sustainable. Because the local populations export and import individuals, they can be considered as open recruitment systems in which part of the recruited breeding birds are not produced locally. The spatial extent and the degree of isolation of a local population have an impact on local population dynamics; hence these factors need to be considered in studies about local population dynamics and for deriving conservation measures.  相似文献   

9.
Decline of migrant wader populations worldwide implies that their demography may be affected by phenomena occurring in a large geographical scale. Knowledge about vital rates affecting population growth and viability helps in finding the processes behind the declines. We estimated the rate of population growth (λ) of a dramatically declined population of Temminck's stints Calidris temminckii using a ten year capture–recapture data. We assessed the viability of the population by projections based on λ and its variation. We also studied sensitivity of λ to changes in vital rates (breeding success, recruitment and adult survival). Both adult and juvenile survival and breeding success were lower than c. 30 years earlier. Adult survival seemed to have dropped during the study period. Population growth appeared strongly negative and viability analyses predicted an almost certain extinction within a few decades. Adult survival formed the main component of the growth rate suggesting that population crash is mainly caused by a drop in adult survival. Still, sensitivity analyses showed that a moderate rise in adult survival or any other single vital rate would not make the population viable. Most probably, survival has dropped due to factors operating along migration routes and wintering areas, at sites shared by birds from other parts of the breeding range. Therefore, the observed population crash and decline in adult survival may indicate parallel changes in poorly monitored arctic populations. Migration habits (continental wide flyways and scattered wintering areas) imply that factors responsible for the drop in survival have a wide geographical range.  相似文献   

10.
Dormant life stages are often critical for population viability in stochastic environments, but accurate field data characterizing them are difficult to collect. Such limitations may translate into uncertainties in demographic parameters describing these stages, which then may propagate errors in the examination of population‐level responses to environmental variation. Expanding on current methods, we 1) apply data‐driven approaches to estimate parameter uncertainty in vital rates of dormant life stages and 2) test whether such estimates provide more robust inferences about population dynamics. We built integral projection models (IPMs) for a fire‐adapted, carnivorous plant species using a Bayesian framework to estimate uncertainty in parameters of three vital rates of dormant seeds – seed‐bank ingression, stasis and egression. We used stochastic population projections and elasticity analyses to quantify the relative sensitivity of the stochastic population growth rate (log λs) to changes in these vital rates at different fire return intervals. We then ran stochastic projections of log λs for 1000 posterior samples of the three seed‐bank vital rates and assessed how strongly their parameter uncertainty propagated into uncertainty in estimates of log λs and the probability of quasi‐extinction, Pq(t). Elasticity analyses indicated that changes in seed‐bank stasis and egression had large effects on log λs across fire return intervals. In turn, uncertainty in the estimates of these two vital rates explained > 50% of the variation in log λs estimates at several fire‐return intervals. Inferences about population viability became less certain as the time between fires widened, with estimates of Pq(t) potentially > 20% higher when considering parameter uncertainty. Our results suggest that, for species with dormant stages, where data is often limited, failing to account for parameter uncertainty in population models may result in incorrect interpretations of population viability.  相似文献   

11.
Orchids (Orchidaceae) are a family of flowering plants with a high proportion of threatened taxa making them an important focus of plant conservation. Orchid conservation efforts are most effective when informed by reliable demographic research. We utilized transition matrix models to examine the population dynamics and demography within sympatric populations of a species pair of terrestrial round-leaved orchids, Platanthera macrophylla and P. orbiculata. The models were parameterized from a large data set spanning 9 years from field observations of over 1,000 orchids. Life table response experiments (LTRE) were used to identify which life history transitions, and which vital rates within those transitions, most contributed to observed differences between the two species and most contributed to interannual variation within each species. Results from mean transition matrices projected finite rates of population growth that were not significantly different between the two species, with P. macrophylla near the replacement rate and P. orbiculata below it. LTRE revealed that the difference in population growth rates between the two species was mostly due to differences in fecundity (flowering adult to protocorm transition) driven by differences in fruit set and seed germination into protocorm, which were much greater for P. macrophylla. The two primary contributors to interannual variation in population growth rates for both orchids were adult survival and fruit set, respectively. These findings indicate that any environmental disturbances harming adult survival or fecundity will have a disproportionately negative effect on the orchid populations.  相似文献   

12.
In this study, we use deterministic and stochastic models to analyze the demography of Verreaux’s sifaka (Propithecus verreauxi verreauxi) in a fluctuating rainfall environment. The model is based on 16 years of data from Beza Mahafaly Special Reserve, southwest Madagascar. The parameters in the stage-classified life cycle were estimated using mark-recapture methods. Statistical models were evaluated using information-theoretic techniques and multi-model inference. The highest ranking model is time-invariant, but the averaged model includes rainfall-dependence of survival and breeding. We used a time-series model of rainfall to construct a stochastic demographic model. The time-invariant model and the stochastic model give a population growth rate of about 0.98. Bootstrap confidence intervals on the growth rates, both deterministic and stochastic, include 1. Growth rates are most elastic to changes in adult survival. Many demographic statistics show a nonlinear response to annual rainfall but are depressed when annual rainfall is low, or the variance in annual rainfall is high. Perturbation analyses from both the time-invariant and stochastic models indicate that recruitment and survival of older females are key determinants of population growth rate.  相似文献   

13.
Natural populations are exposed to seasonal variation in environmental factors that simultaneously affect several demographic rates (survival, development and reproduction). The resulting covariation in these rates determines population dynamics, but accounting for its numerous biotic and abiotic drivers is a significant challenge. Here, we use a factor‐analytic approach to capture partially unobserved drivers of seasonal population dynamics. We use 40 years of individual‐based demography from yellow‐bellied marmots (Marmota flaviventer) to fit and project population models that account for seasonal demographic covariation using a latent variable. We show that this latent variable, by producing positive covariation among winter demographic rates, depicts a measure of environmental quality. Simultaneously, negative responses of winter survival and reproductive‐status change to declining environmental quality result in a higher risk of population quasi‐extinction, regardless of summer demography where recruitment takes place. We demonstrate how complex environmental processes can be summarized to understand population persistence in seasonal environments.  相似文献   

14.
Abstract: Age ratios (e.g., calf:cow for elk and fawn:doe for deer) are used regularly to monitor ungulate populations. However, it remains unclear what inferences are appropriate from this index because multiple vital rate changes can influence the observed ratio. We used modeling based on elk (Cervus elaphus) life-history to evaluate both how age ratios are influenced by stage-specific fecundity and survival and how well age ratios track population dynamics. Although all vital rates have the potential to influence calf:adult female ratios (i.e., calf:cow ratios), calf survival explained the vast majority of variation in calf:adult female ratios due to its temporal variation compared to other vital rates. Calf:adult female ratios were positively correlated with population growth rate (Λ) and often successfully indicated population trajectories. However, calf:adult female ratios performed poorly at detecting imposed declines in calf survival, suggesting that only the most severe declines would be rapidly detected. Our analyses clarify that managers can use accurate, unbiased age ratios to monitor arguably the most important components contributing to sustainable ungulate populations, survival rate of young and Λ. However, age ratios are not useful for detecting gradual declines in survival of young or making inferences about fecundity or adult survival in ungulate populations. Therefore, age ratios coupled with independent estimates of population growth or population size are necessary to monitor ungulate population demography and dynamics closely through time.  相似文献   

15.
Demographic compensation arises when vital rates change in opposite directions across populations, buffering the variation in population growth rates, and is a mechanism often invoked to explain the stability of species geographic ranges. However, studies on demographic compensation have disregarded the effects of temporal variation in vital rates and their temporal correlations, despite theoretical evidence that stochastic dynamics can affect population persistence in temporally varying environments. We carried out a seven‐year‐long demographic study on the perennial plant Arabis alpina (L.) across six populations encompassing most of its elevational range. We discovered demographic compensation in the form of negative correlations between the means of plant vital rates, but also between their temporal coefficients of variation, correlations and elasticities. Even if their contribution to demographic compensation was small, this highlights a previously overlooked, but potentially important, role of stochastic processes in stabilising population dynamics at range margins.  相似文献   

16.
Many plant species currently exist in fragmented populations of different sizes, while they also experience unpredictable climatic fluctuation over time. However, we still understand little about how plant demography responds to such spatial and temporal environmental variability. We studied population dynamics of an understory perennial herb Trillium camschatcense in the Tokachi plain of Hokkaido, Japan, where a significant effect of forest fragmentation on seedling recruitment was previously reported. Four populations across a range of fragment sizes were studied for 6 years, and the data were analyzed using matrix population models. Per capita fecundity (the number of recruits per plant) varied greatly among populations, but the variation in population growth rates (λ) was mainly driven by the variation in stasis and growth rates, suggesting that the general trend of reduced fecundity in fragmented populations may not be readily translated into subsequent dynamics. Temporal variation in λ among years was more than 2 times larger than spatial variation among populations, and this result was likely attributable to the contrasting response of correlation structures among demographic rates. The among-population variation in λ was dampened by negative covariation between matrix elements possibly due to density-dependent regulation as well as an inherent constraint that some elements are not independent, whereas positive covariation between matrix elements resulted in large temporal variation in λ. Our results show that population dynamics responded differently to habitat fragmentation and temporal variability of the environment, emphasizing the need to discriminate these spatial and temporal variations in demographic models. Although no populations were projected to be declining in stochastic simulations, correlation between current habitat size and plant density implies historical λ is positively related to habitat size.  相似文献   

17.
ABSTRACT We assessed the potential for reestablishing elk (Cervus elaphus) in Great Smoky Mountains National Park (GSMNP), USA, by estimating vital rates of experimentally released animals from 2001 to 2006. Annual survival rates for calves ranged from 0.333 to 1.0 and averaged 0.592. Annual survival for subadult and adult elk (i.e., ≥ 1 yr of age) ranged from 0.690 to 0.933, depending on age and sex. We used those and other vital rates to model projected population growth and viability using a stochastic individual-based model. The annual growth rate (λ) of the modeled population over a 25-year period averaged 0.996 and declined from 1.059 the first year to 0.990 at year 25. The modeled population failed to attain a positive 25-year mean growth rate in 46.0% of the projections. Poor calf recruitment was an important determinant of low population growth. Predation by black bears (Ursus americanus) was the dominant calf mortality factor. Most of the variance of growth projections was due to demographic variation resulting from the small population size (n = 61). Management actions such as predator control may help increase calf recruitment, but our projections suggest that the GSMNP elk population may be at risk for some time because of high demographic variation.  相似文献   

18.
Ligularia sibirica is a relict wetland perennial plant species of the Czech and Slovak Republic. Explaining variation in population growth rate and identifying the causes of that variation is important for effective protection of such an endangered species. Matrix models based on four years of data of 11 populations were used to identify the pattern of variation in the demographic vital rates of this species, and to examine the causes of the variation such as population size and habitat type. Further, the matrix model was used to determine the population growth rate, longevity and risk of extinction of each population and to identify the specific vital rates that most affect population growth rate. The results showed that population growth rates were significantly different between years and populations. Temporal variation was mostly due to variable survival of adult individuals, while spatial variation was mainly driven by fertility of one small currently expanding population. Further, most studied populations of L. sibirica are performing well and only those growing in nitrogen-rich habitats have a high extinction risk. The results also indicate that all populations have low adult mortality, long-lived individuals (61.3?years on average) and some populations also show features of remnant populations (i.e., the persistence of populations in severe conditions in spite of no reproduction). Our results imply that detailed demographic data are needed to understand the long-term prospects of these populations. These data may serve as an early warning system for this species long before an obvious decline occurs in the populations.  相似文献   

19.
马祖飞  李典谟 《生态学报》2003,23(12):2702-2710
影响种群绝灭的随机干扰可分为种群统计随机性、环境随机性和随机灾害三大类。在相对稳定的环境条件下和相对较短的时间内,以前两类随机干扰对种群绝灭的影响为生态学家关注的焦点。但是,由于自然种群动态及其影响因子的复杂特征,进一步深入研究随机干扰对种群绝灭的作用在理论上和实践上都必须发展新的技术手段。本文回顾了种群统计随机性与环境随机性的概念起源与发展,系统阐述了其分析方法。归纳了两类随机性在种群绝灭研究中的应用范围、作用方式和特点的异同和区别方法。各类随机作用与种群动态之间关系的理论研究与对种群绝灭机理的实践研究紧密相关。根据理论模型模拟和自然种群实际分析两方面的研究现状,作者提出了进一步深入研究随机作用与种群非线性动态方法的策略。指出了随机干扰影响种群绝灭过程的研究的方向:更多的研究将从单纯的定性分析随机干扰对种群动力学简单性质的作用,转向结合特定的种群非线性动态特征和各类随机力作用特点具体分析绝灭极端动态的成因,以期做出精确的预测。  相似文献   

20.
Changes in climate can alter individual body size, and the resulting shifts in reproduction and survival are expected to impact population dynamics and viability. However, appropriate methods to account for size‐dependent demographic changes are needed, especially in understudied yet threatened groups such as amphibians. We investigated individual‐ and population‐level demographic effects of changes in body size for a terrestrial salamander using capture–mark–recapture data. For our analysis, we implemented an integral projection model parameterized with capture–recapture likelihood estimates from a Bayesian framework. Our study combines survival and growth data from a single dataset to quantify the influence of size on survival while including different sources of uncertainty around these parameters, demonstrating how selective forces can be studied in populations with limited data and incomplete recaptures. We found a strong dependency of the population growth rate on changes in individual size, mediated by potential changes in selection on mean body size and on maximum body size. Our approach of simultaneous parameter estimation can be extended across taxa to identify eco‐evolutionary mechanisms acting on size‐specific vital rates, and thus shaping population dynamics and viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号