首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stressors and heterogeneity are ubiquitous features of natural environments, and theory suggests that when environmental qualities alter flowering schedules through phenotypic plasticity, assortative mating can result that promotes evolutionary divergence. Therefore, it is important to determine whether common ecological stressors induce similar changes in flowering time. We review previous studies to determine whether two important stressors, water restriction and herbivory, induce consistent flowering time responses among species; for example, how often do water restriction and herbivory both delay flowering? We focus on the direction of change in flowering time, which affects the potential for divergence in heterogeneous environments. We also tested whether these stressors influenced time to flowering and nonphenology traits using Mimulus guttatus. The literature review suggests that water restriction has variable effects on flowering time, whereas herbivory delays flowering with exceptional consistency. In the Mimulus experiment, low water and herbivory advanced and delayed flowering, respectively. Overall, our results temper theoretical predictions for evolutionary divergence due to habitat‐induced changes in flowering time; in particular, we discuss how accounting for variation in the direction of change in flowering time can either increase or decrease the potential for divergence. In addition, we caution against adaptive interpretations of stress‐induced phenology shifts.  相似文献   

2.
Ivey CT  Carr DE 《Annals of botany》2012,109(3):583-598

Background and Aims

Self-fertilizing taxa are often found at the range margins of their progenitors, where sub-optimal habitats may select for alternative physiological strategies. The extent to which self-fertilization is favoured directly vs. arising indirectly through correlations with other adaptive life history traits is unclear. Trait responses to selection depend on genetic variation and covariation, as well as phenotypic and genetic responses to altered environmental conditions. We tested predictions of the hypothesis that self-fertilization in Mimulus arises through direct selection on physiological and developmental traits that allow seasonal drought escape.

Methods

Phenotypic selection on mating system and drought escape traits was estimated in field populations of M. guttatus. In addition, trait phenotype and phenotypic selection were compared between experimental wet and dry soil in two greenhouse populations each of M. guttatus and M. nasutus. Finally, genetic variation and covariation for traits were compared between wet and dry soil treatments in a greenhouse population of M. guttatus.

Key Results

Consistent with predictions, selection for early flowering was generally stronger than for mating system traits, and selection for early flowering was stronger in dry soil. Inconsistent with predictions, selection for water-use efficiency was largely absent; selection for large flowers was stronger than for drought escape in the field; and most drought escape and mating system traits were not genetically correlated. A positive genetic correlation between flowering time and flower size, which opposed the adaptive contour, emerged only in wet soil, suggesting that variation in water availability may maintain variation in these traits. Plastic responses to soil moisture treatments supported the idea that taxonomic divergence could have been facilitated by plasticity in flowering time and selfing.

Conclusions

The hypothesis that plant mating systems may evolve indirectly via selection on correlated life history characteristics is plausible and warrants increased attention.  相似文献   

3.
Endosperm is an angiosperm innovation central to their reproduction whose development, and thus seed viability, is controlled by genomic imprinting, where expression from certain genes is parent-specific. Unsuccessful imprinting has been linked to failed inter-specific and inter-ploidy hybridization. Despite their importance in plant speciation, the underlying mechanisms behind these endosperm-based barriers remain poorly understood. Here, we describe one such barrier between diploid Mimulus guttatus and tetraploid Mimulus luteus. The two parents differ in endosperm DNA methylation, expression dynamics, and imprinted genes. Hybrid seeds suffer from underdeveloped endosperm, reducing viability, or arrested endosperm and seed abortion when M. guttatus or M. luteus is seed parent, respectively, and transgressive methylation and expression patterns emerge. The two inherited M. luteus subgenomes, genetically distinct but epigenetically similar, are expressionally dominant over the M. guttatus genome in hybrid embryos and especially their endosperm, where paternal imprints are perturbed. In aborted seeds, de novo methylation is inhibited, potentially owing to incompatible paternal instructions of imbalanced dosage from M. guttatus imprints. We suggest that diverged epigenetic/regulatory landscapes between parental genomes induce epigenetic repatterning and global shifts in expression, which, in endosperm, may uniquely facilitate incompatible interactions between divergent imprinting schemes, potentially driving rapid barriers.

Diverged epigenetic/regulatory landscapes between parental genomes result in epigenetic repatterning in hybrids that drive global shifts in endosperm gene expression patterns.  相似文献   

4.
Understanding which environmental variables and traits underlie adaptation to harsh environments is difficult because many traits evolve simultaneously as populations or species diverge. Here, we investigate the ecological variables and traits that underlie Mimulus laciniatus’ adaptation to granite outcrops compared to its sympatric, mesic‐adapted progenitor, Mimulus guttatus. We use fine‐scale measurements of soil moisture and herbivory to examine differences in selective forces between the species’ habitats, and measure selection on flowering time, flower size, plant height, and leaf shape in a reciprocal transplant using M. laciniatus × M. guttatus F4 hybrids. We find that differences in drought and herbivory drive survival differences between habitats, that M. laciniatus and M. guttatus are each better adapted to their native habitat, and differential habitat selection on flowering time, plant stature, and leaf shape. Although early flowering time, small stature, and lobed leaf shape underlie plant fitness in M. laciniatus’ seasonally dry environment, increased plant size is advantageous in a competitive mesic environment replete with herbivores like M. guttatus’. Given that we observed divergent selection between habitats in the direction of species differences, we conclude that adaptation to different microhabitats is an important component of reproductive isolation in this sympatric species pair.  相似文献   

5.
Mimulus guttatus and M. nasutus are an evolutionary and ecological model sister species pair differentiated by ecology, mating system, and partial reproductive isolation. Despite extensive research on this system, the history of divergence and differentiation in this sister pair is unclear. We present and analyze a population genomic data set which shows that M. nasutus budded from a central Californian M. guttatus population within the last 200 to 500 thousand years. In this time, the M. nasutus genome has accrued genomic signatures of the transition to predominant selfing, including an elevated proportion of nonsynonymous variants, an accumulation of premature stop codons, and extended levels of linkage disequilibrium. Despite clear biological differentiation, we document genomic signatures of ongoing, bidirectional introgression. We observe a negative relationship between the recombination rate and divergence between M. nasutus and sympatric M. guttatus samples, suggesting that selection acts against M. nasutus ancestry in M. guttatus.  相似文献   

6.
The combined effects of herbivory and water stress on growth and reproduction of mile-a-minute weed (Persicaria perfoliata (L.) H. Gross) were investigated in greenhouse trials over two years, with well-watered or water-limited plants either exposed or not exposed to herbivory by the mile-a-minute weevil (Rhinoncomimus latipes Korotyaev). Moisture limitation and weevil herbivory significantly reduced the number of seeds produced by P. perfoliata, with the fewest seeds produced when both factors were present. Seed weight was reduced by moisture limitation and weevil herbivory the second year, and seed viability was reduced by herbivory both years. Plant biomass was lower both years under conditions of water limitation, with an additional effect of herbivory the second year. Well-watered plants the second year also produced substantially more weevils than water-limited plants by the end of the season. Results are consistent with field observations suggesting that years of high rainfall allow resurgence of P. perfoliata plant populations that were previously suppressed by R. latipes. An additional environmental chamber trial assessed the interaction between the weed and weevil at two different temperatures. Here, plant mortality occurred only at the higher temperature with weevil herbivory, suggesting that herbivory has a greater negative effect on P. perfoliata under warm conditions. Additional studies on temperature effects are needed for a more complete understanding of interactions between P. perfoliata and R. latipes under different abiotic conditions.  相似文献   

7.
Differential adaptation to local environmental conditions is thought to be an important driver of speciation. Plants, whose sedentary lifestyle necessitates fine‐tuned adaptation to edaphic conditions such as water availability, are often distributed based on these conditions. Populations occupying water‐limited habitats may employ a variety of strategies, involving numerous phenotypes, to prevent and withstand desiccation. In sympatry, two closely related Mimulus species—M. guttatus and M. nasutus—occupy distinct microhabitats that differ in seasonal water availability. In a common garden experiment, we characterized natural variation within and between sympatric M. guttatus and M. nasutus in the ability to successfully set seed under well‐watered and drought conditions. We also measured key phenotypes for drought adaptation, including developmental timing, plant size, flower size, and stomatal density. Consistent with their microhabitat associations in nature, M. nasutus set seed much more successfully than M. guttatus under water‐limited conditions. This divergence in reproductive output under drought was due to differences in mortality after the onset of flowering, with M. nasutus surviving at a much higher rate than M. guttatus. Higher seed set in M. nasutus was mediated, at least in part, by a plastic increase in the rate of late‐stage development (i.e., fruit maturation), consistent with the ability of this species to inhabit more ephemeral habitats in the field. Our results suggest adaptation to water availability may be an important factor in species maintenance of these Mimulus taxa in sympatry.  相似文献   

8.
Water-use efficiency is thought to be related to plant performance and natural selection for plants in arid habitats, based on a general expectation that increased water-use efficiency is associated with decreased carbon gain and biomass accumulation. Using leaf carbon isotope discrimination Δ to determine integrated water-use efficiency, we estimated genetic variance for, and examined the relationships among Δ, biomass, and gas exchange characters for full-sibling families of the woody shrub, Chrysothamnus nauseosus, grown from seed collected at Tintic, Utah. In both well-watered greenhouse and common garden experiments, and water-limited common garden experiments, there were significant family differences for Δ, biomass, and morphological characters, indicating a potential for genetic change in response to selection. However, estimates of broad-sense heritabilities for Δ were low, indicating that the rate of change in response to selection would be relatively slow. This was consistent with the large amount of phenotypic plasticity observed for Δ as it differed with water treatment and year in the garden experiment. Phenotypically, aboveground biomass and Δ were negatively correlated within the well-watered treatments (i.e., more water-use efficient plants were larger), not correlated within the water-limited treatment, and positively correlated for combined well-watered and water-limited garden treatments, suggesting that variation in both photosynthetic capacity and stomatal limitation contribute to the variation in Δ. In contrast to the phenotypic correlations, genetic correlations for biomass and Δ were consistently negative within each treatment, and selection for higher water-use efficiency through low Δ for C. nauseosus plants in this population would tend to shift populations toward larger plants. For C. nauseosus, increased water-use efficiency is not necessarily associated with decreased carbon gain.  相似文献   

9.
10.
Significant genetic variation in leaf photosynthetic rate has been reported in grain sorghum [Sorghum biocolor (L.) Moench]. The relationships between leaf photosynthetic rates and total biomass production and grain yield remain to be established and formed the purpose of this experiment. Twenty two grain sorghum parent lines were tested in the field during the 1988 growing season under well-watered and water-limited conditions. Net carbon assimilation rates were measured at mid-day during the 30 day period from panicle initiation to head exertion on upper-most fully expanded leaves using a portable photosynthesis system (LI-6200). Total biomass and grain production were determined at physiological maturity. The lines exhibited significant genetic variation in leaf photosynthetic rate, total biomass production and grain yield. Significant positive correlations existed between leaf photosynthesis and total biomass and grain production under both well-watered and water-limited conditions. The results suggest that leaf photosynthetic rate measured prior to flowering is a good indicator of productivity in grain sorghum.  相似文献   

11.
Background and Aims The genetic basis of leaf shape has long interested botanists because leaf shape varies extensively across the plant kingdom and this variation is probably adaptive. However, knowledge of the genetic architecture of leaf shape variation in natural populations remains limited. This study examined the genetic architecture of leaf shape diversification among three edaphic specialists in the Mimulus guttatus species complex. Lobed and narrow leaves have evolved from the entire, round leaves of M. guttatus in M. laciniatus, M. nudatus and a polymorphic serpentine M. guttatus population (M2L).Methods Bulk segregant analysis and next-generation sequencing were used to map quantitative trait loci (QTLs) that underlie leaf shape in an M. laciniatus × M. guttatus F2 population. To determine whether the same QTLs contribute to leaf shape variation in M. nudatus and M2L, F2s from M. guttatus × M. nudatus and lobed M2L × unlobed M. guttatus crosses were genotyped at QTLs from the bulk segregant analysis.Key Results Narrow and lobed leaf shapes in M. laciniatus, M. nudatus and M. guttatus are controlled by overlapping genetic regions. Several promising leaf shape candidate genes were found under each QTL.Conclusions The evolution of divergent leaf shape has taken place multiple times in the M. guttatus species complex and is associated with the occupation of dry, rocky environments. The genetic architecture of elongated and lobed leaves is similar across three species in this group. This may indicate that parallel genetic evolution from standing variation or new mutations is responsible for the putatively adaptive leaf shape variation in Mimulus.  相似文献   

12.
Self-fertilization and admixture of genotypes from different populations can have major fitness consequences in native species. However, few studies have addressed their potential roles in invasive species. Here, we used plants of Mimulus guttatus from seven native North American, three invasive Scottish and four invasive New Zealand populations to address this. We created seeds from self-fertilization, within-population outcrossing, between-population outcrossing within the same range, and outcrossing between the native and invasive ranges. A greenhouse experiment showed that native and invasive plants of M. guttatus suffered to similar degrees from inbreeding depression, in terms of asexual reproduction and biomass production. After outcrossing with plants from other populations, M. guttatus benefited from heterosis, in terms of asexual and sexual reproduction, and biomass production, particularly when plants from native and invasive populations were crossed. This suggests that, when novel genotypes of M. guttatus from the native North American range will be introduced to the invasive ranges, subsequent outcrossing with M. guttatus plants that are already there might further boost invasiveness of this species.  相似文献   

13.
Niche partitioning among close relatives may reflect trade‐offs underlying species divergence and coexistence (e.g., between stress tolerance and competitive ability). We quantified the effects of habitat and congeneric species interactions on fitness for two closely related herbaceous plant species, Mimulus guttatus and Mimulus laciniatus, in three common habitat types within their sympatric range. Drought stress strongly reduced survival of M. guttatus in fast‐drying seeps occupied by M. laciniatus, suggesting that divergent habitat adaptation maintains this niche boundary. However, neither seedling performance nor congeneric competition explained the absence of M. laciniatus from shady streams where M. guttatus thrives. M. laciniatus may be excluded from this habitat by competition with other species in the community or mature M. guttatus. Species performance and competitive ability were similar in sympatric meadows where plant community stature and the growing season length are intermediate between seeps and streams. Stochastic effects (e.g., dispersal among habitats or temporal variation) may contribute to coexistence in this habitat. Habitat adaptation, species interactions, and stochastic mechanisms influence sympatric distributions for these recently diverged species.  相似文献   

14.
Global trade and travel is irreversibly changing the distribution of species around the world. Because introduced species experience drastic demographic events during colonization and often face novel environmental challenges from their native range, introduced populations may undergo rapid evolutionary change. Genomic studies provide the opportunity to investigate the extent to which demographic, historical and selective processes shape the genomic structure of introduced populations by analysing the signature that these processes leave on genomic variation. Here, we use next‐generation sequencing to compare genome‐wide relationships and patterns of diversity in native and introduced populations of the yellow monkeyflower (Mimulus guttatus). Genome resequencing data from 10 introduced populations from the United Kingdom (UK) and 12 native M. guttatus populations in North America (NA) demonstrated reduced neutral genetic diversity in the introduced range and showed that UK populations are derived from a geographic region around the North Pacific. A selective‐sweep analysis revealed site frequency changes consistent with selection on five of 14 chromosomes, with genes in these regions showing reduced silent site diversity. While the target of selection is unknown, genes associated with flowering time and biotic and abiotic stresses were located within the swept regions. The future identification of the specific source of origin of introduced UK populations will help determining whether the observed selective sweeps can be traced to unsampled native populations or occurred since dispersal across the Atlantic. Our study demonstrates the general potential of genome‐wide analyses to uncover a range of evolutionary processes affecting invasive populations.  相似文献   

15.
Chromosomal rearrangement polymorphisms are common and increasingly found to be associated with adaptive ecological divergence and speciation. Rearrangements, such as inversions, reduce recombination in heterozygous individuals and thus can protect favourable allelic combinations at linked loci, facilitating their spread in the presence of gene flow. Recently, we identified a chromosomal inversion polymorphism that contributes to ecological adaptation and reproductive isolation between annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus. Here we evaluate the population genetic structure of this inverted region in comparison with the collinear regions of the genome across the M. guttatus species complex. We tested whether annual and perennial M. guttatus exhibit different patterns of divergence for loci in the inverted and noninverted regions of the genome. We then evaluated whether there are contrasting climate associations with these genomic regions through redundancy analysis. We found that the inversion exhibits broadly different patterns of divergence among annual and perennial M. guttatus and is associated with environmental variation across population accessions. This study is the first widespread population genetic survey of the diversity of the M. guttatus species complex. Our findings contribute to a greater understanding of morphological, ecological, and genetic evolutionary divergence across this highly diverse group of closely related ecotypes and species. Finally, understanding species relationships among M. guttatus sp. has hitherto been stymied by accumulated evidence of substantial gene flow among populations as well as designated species. Nevertheless, our results shed light on these relationships and provide insight into adaptation in life history traits within the complex.  相似文献   

16.
Corollas of Mimulus guttatus are shed 1–9 days post-anthesis, and autofertility is often high. The possibility that corolla shedding causes self-pollination in the absence of pollinators was examined. In one experimental population 82% of seed produced under conditions of pollinator exclusion were due to corolla abscission. Corolla abscission, in the absence of pollinators, is a mechanism of delayed self-fertilization in this taxon.  相似文献   

17.
Our previous research, conducted under well-watered conditions without fertilizer application, showed that fuzziness cottonseed trait resulted in cottonseed nutrition differences between fuzzy (F) and fuzzless (N) cottonseed. Under water stress conditions, B mobility is further limited, inhibiting B movement within the plant, affecting seed nutrition (quality). Therefore, we hypothesized that both foliar B and water stress can affect B mobility, altering cottonseed protein, oil, and mineral nutrition. The objective of the current research was to evaluate the effects of the fuzziness seed trait on boron (B) and seed nutrition under water stress and foliar B application using near-isogenic cotton lines (NILs) grown in a repeated greenhouse experiment. Plants were grown under-well watered conditions (The soil water potential was kept between -15 to -20 kPa, considered field capacity) and water stress conditions (soil water potential between -100 and -150 kPa, stressed conditions). Foliar B was applied at a rate of 1.8 kg B ha-1 as H3BO3. Under well-watered conditions without B the concentrations of seed oil in N lines were higher than in F lines, and seed K and N levels were lower in N lines than in F lines. Concentrations of K, N, and B in leaves were higher in N lines than in F lines, opposing the trend in seeds. Water-stress resulted in higher seed protein concentrations, and the contribution of cell wall (structural) B to the total B exceeded 90%, supporting the structural role of B in plants. Foliar B application under well-watered conditions resulted in higher seed protein, oil, C, N, and B in only some lines. This research showed that cottonseed nutrition differences can occur due to seed fuzziness trait, and water stress and foliar B application can alter cottonseed nutrition.  相似文献   

18.
As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci—hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)—to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species.  相似文献   

19.
The aim of this study is to investigate the evolution of intrinsic postzygotic isolation within and between populations of Mimulus guttatus and Mimulus nasutus. We made 17 intraspecific and interspecific crosses, across a wide geographical scale. We examined the seed germination success and pollen fertility of reciprocal F1 and F2 hybrids and their pure-species parents, and used biometrical genetic tests to distinguish among alternative models of inheritance. Hybrid seed inviability was sporadic in both interspecific and intraspecific crosses. For several crosses, Dobzhansky–Muller incompatibilities involving nuclear genes were implicated, while two interspecific crosses revealed evidence of cytonuclear interactions. Reduced hybrid pollen fertility was found to be greatly influenced by Dobzhansky–Muller incompatibilities in five out of six intraspecific crosses and nine out of 11 interspecific crosses. Cytonuclear incompatibilities reduced hybrid fitness in only one intraspecific and one interspecific cross. This study suggests that intrinsic postzygotic isolation is common in hybrids between these Mimulus species, yet the particular hybrid incompatibilities responsible for effecting this isolation differ among the populations tested. Hence, we conclude that they evolve and spread only at the local scale.  相似文献   

20.
Background and AimsIn water-limited landscapes, some plants build structures that enable them to survive with minimal water (drought resistance). Instead of making structures that allow survival through times of water limitation, annual plants may invoke a drought escape strategy where they complete growth and reproduction when water is available. Drought escape and resistance each require a unique combination of traits and therefore plants are likely to have a suite of trait values that are consistent with a single drought response strategy. In environments where conditions are variable, plants may additionally evolve phenotypically plastic trait responses to water availability. Invasive annual species commonly occur in arid and semi-arid environments and many will be subject to reduced water availability associated with climate change. Assessing intraspecific trait variation across environmental gradients is a valuable tool for understanding how invasive plants establish and persist in arid environments.MethodsIn this study, we used a common garden experiment with two levels of water availability to determine how traits related to carbon assimilation, water use, biomass allocation and flowering phenology vary in California wild radish populations across an aridity gradient.Key ResultsWe found that populations from arid environments have rapid flowering and increased allocation to root biomass, traits associated with both drought escape and tolerance. Early flowering was associated with higher leaf nitrogen concentration and lower leaf mass per area, traits associated with high resource acquisition. While trait values varied across low- and high-water treatments, these shifts were consistent across populations, indicating no differential plasticity across the aridity gradient.ConclusionsWhile previous studies have suggested that drought escape and drought resistance are mutually exclusive drought response strategies, our findings suggest that invasive annuals may employ both strategies to succeed in novel semi-arid environments. As many regions are expected to become more arid in the future, investigations of intraspecific trait variation within low water environments help to inform our understanding of potential evolutionary responses to increased aridity in invasive species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号