首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fine root turnover plays an important role in the cycling of carbon and nutrients in ecosystems. Not much is known about fine root dynamics in tropical montane rainforests, which are characterized by steep temperature gradients over short distances. We applied the minirhizotron technique in five forest stands along an elevational transect between 1,050 and 3,060 m above sea level in a South Ecuadorian montane rainforest in order to test the influence of climate and soil parameters on fine root turnover. Turnover of roots with diameter <?2.0 mm was significantly higher in the lowermost and the uppermost stand (0.9 cm cm?1 year?1) than in the three mid-elevation stands (0.6 cm cm?1 year?1). Root turnover of finest roots (d?<?0.5 mm) was higher compared to the root cohort with d?<?2.0 mm, and exceeded 1.0 cm cm?1 year?1 at the lower and upper elevations of the transect. We propose that the non linear altitudinal trend of fine root turnover originates from an overlapping of a temperature effect with other environmental gradients (e.g. adverse soil conditions) in the upper part of the transect and that the fast replacement of fine roots is used as an adaptive mechanism by trees to cope with limiting environmental conditions.  相似文献   

2.
Better understanding of variation in soil carbon dioxide (CO2) efflux caused by measurement techniques is needed, especially over gradients of site disturbance, to accurately estimate the global carbon cycle. We present soil CO2 efflux data from a gradient of disturbance to ponderosa pine (Pinus ponderosa C. Lawson var. scopulorum Engelm.) forests in northern Arizona, USA that were obtained using four different techniques: vented static chambers, a Licor 6400‐09, and soil CO2 diffusion profiles using two different models (Moldrup, Millington–Quirk) to estimate soil gas diffusivity. We also compared soil CO2 efflux measured by the Moldrup and Millington–Quirk diffusion profile methods to nighttime total ecosystem respiration (TER) data from an eddy covariance tower. We addressed four questions: (1) Does the use of a given method to measure soil CO2 efflux bias results across a disturbance gradient? (2) Does the magnitude of difference between observed and modeled estimates of soil CO2 differ between methods and across sites? (3) What is the spatial variability of each method at each site? (4) Which method is closest to the estimate of TER measured by the eddy covariance tower? Although soil CO2 efflux varied significantly among methods the differences were consistent among sites. Measured and modeled total growing season fluxes were generally higher for the Licor 6400‐09 and Millington–Quirk diffusion gradient methods compared with static chamber and the Moldrup diffusion gradient methods. A power analysis showed that the larger static chamber was the most efficient method at sampling spatial variation in soil CO2 efflux. Nighttime measurements of soil CO2 efflux from the Moldrup diffusion gradient method were most strongly related to nighttime TER assessed with eddy covariance. The use of a single, well‐implemented method to measure soil CO2 efflux is unlikely to create bias in comparisons across a gradient of forest disturbance.  相似文献   

3.
4.
ABSTRACT Large‐scale transformation of forested landscapes is a major factor in loss of biological diversity in the American tropics. Investigators examining the responses of species to deforestation rarely control for variation in the amount of forest relative to other habitats at the landscape‐level. Bellavista Reserve on the western slope of the Andes in Ecuador is located between similar‐sized areas of pristine, protected forest, and deforested landscapes. We used strip‐transect counts and mist netting to evaluate habitat use by passerine birds in a habitat mosaic consisting of abandoned pastures, forest edges, forest fragments, and large blocks of interior tropical montane cloud forest (TMCF). During 3600 net hours, we had 1476 captures, including 346 recaptures. Of 78 species captured in mist nets, 30 had sufficient counts for Poison Rate Regression (PRR) modeling (a statistical method for comparing counts). Twelve species (40%) had capture patterns indicative of an affinity for mature TMCF, and 6 species (20%) had significantly higher counts in degraded areas (forest edge, forest fragment, and regenerating pastures) than in interior TMCF. The remaining 40% showed no significant bias in detection among habitats. Combined with strip‐count data, our results suggest that about 38% of the 119 species sampled at the Bellavista Reserve occur primarily in mature TMCF, avoiding edges and early second‐growth forest. Populations of these species may be vulnerable to further loss, fragmentation, and degradation of TMCF and, as such, deserve additional study and a place on lists of species of conservation concern.  相似文献   

5.
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climates. Here we report results of a large‐scale (1 ha) throughfall exclusion experiment conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions by >40% and increased rates of consumption of atmospheric CH4 by a factor of >4. No treatment effect has yet been detected for NO and CO2 fluxes. The responses of these microbial processes after three rainy seasons of the exclusion treatment are characteristic of a direct effect of soil aeration on denitrification, methanogenesis, and methanotrophy. An anticipated second phase response, in which drought‐induced plant mortality is followed by increased mineralization of C and N substrates from dead fine roots and by increased foraging of termites on dead coarse roots, has not yet been detected. Analyses of depth profiles of N2O and CO2 concentrations with a diffusivity model revealed that the top 25 cm soil is the site of most of the wet season production of N2O, whereas significant CO2 production occurs down to 100 cm in both seasons, and small production of CO2 occurs to at least 1100 cm depth. The diffusivity‐based estimates of CO2 production as a function of depth were strongly correlated with fine root biomass, indicating that trends in belowground C allocation may be inferred from monitoring and modeling profiles of H2O and CO2.  相似文献   

6.
Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by stimulating organic matter decomposition, creating a positive feedback that will promote further warming. Models predict that the loss of carbon from warming soils will be mediated by microbial physiology, but no empirical data are available on the response of soil carbon and microbial physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show that warming caused a considerable loss of soil carbon that was enhanced by associated changes in microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest, equivalent to a temperature change of ± 15 °C, we found that soil carbon declined over 5 years by 4% in response to each 1 °C increase in temperature. The total loss of carbon was related to its original quantity and lability, and was enhanced by changes in microbial physiology including increased microbial carbon‐use‐efficiency, shifts in community composition towards microbial taxa associated with warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to predicted climatic warming this century.  相似文献   

7.
The availability of key plant nutrients may change with elevation in tropical mountains due to altitudinal gradients in temperature and moisture which affect pedogenesis and nutrient cycling. In a transect from upper lowland to montane forests in NE Ecuador, we tested the hypotheses that (1) the availability of P is low in low-elevation forests but increases upslope, while the availability of N is relatively high at low elevations but decreases with elevation, and (2) increasing amounts of calcium, magnesium and potassium are stored on top of the soil with progressive humus accumulation toward higher elevations, likely to improve nutrient availability. In each 20 plots in undisturbed natural forest at 500, 1000, 1500 and 2000 m?a.s.l., we measured in situ N net mineralization and nitrification rate (NNM and NNI, buried bag method), plant-available phosphorus (Pa, resin-bag method), and salt-exchangeable calcium, potassium and magnesium concentrations (Caex, Kex, Mgex) in the organic and mineral topsoils. NNM and NNI, and the Caex, Kex and Mgex concentrations were much more variable at the plot level than across the four elevations, while Pa varied equally at small and large spatial scales. Pa increased more than 10fold from 500 to 2000 m. The net release of nitrate dominated over ammonium at all elevations. While mass-related NNM and NNI rates and also organic matter C/N ratio in the topsoil remained invariant along the slope, NNM and NNI rates per ground area decreased by about 40% from 500 to 2000 m. Thus, the NNM/Pa ratio decreased markedly with elevation proving our first hypothesis. In support of the second hypothesis, the pools of Caex, Mgex and Kex in the organic layers increased with elevation, demonstrating the key role that organic topsoil horizons are playing for forest nutrition at high elevations. We suggest that the large difference in N versus P availability of tropical (upper) lowland and montane forests is likely to be a key factor influencing the species composition and productivity along tropical mountain slopes.  相似文献   

8.
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climate. Here, we report the final results of a 5‐year, large‐scale (1 ha) throughfall exclusion experiment, followed by 1 year of recovery with natural throughfall, conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions in four out of five treatment years (a natural drought year being the exception), and then recovered during the first year after the drought treatment stopped. Similarly, consumption of atmospheric CH4 increased under drought treatment, except during a natural drought year, and it also recovered to pretreatment values during the first year that natural throughfall was permitted back on the plot. No treatment effect was detected for NO emissions during the first 3 treatment years, but NO emissions increased in the fourth year under the extremely dry conditions of the exclusion plot during a natural drought. Surprisingly, there was no treatment effect on soil CO2 efflux in any year. The drought treatment provoked significant tree mortality and reduced the allocation of C to stems, but allocation of C to foliage and roots were less affected. Taken together, these results suggest that the dominant effect of throughfall exclusion on soil processes during this 6‐year period was on soil aeration conditions that transiently affected CH4, N2O, and NO production and consumption.  相似文献   

9.
Yield of wheat across a subambient carbon dioxide gradient   总被引:1,自引:0,他引:1  
Yields and yield components of two cultivars of day-neutral spring wheat ( Triticum aestivum L.) were assessed along a gradient of daytime carbon dioxide (CO2) concentrations from about 200 to near 350 μmol CO2 (mol air)–1 in a 38 m-long controlled environment chamber. The range in CO2 concentration studied approximates that of Earth's atmosphere since the last ice age. This 75% rise in CO2 concentration increased grain yields more than 200% under well-watered conditions and by 80–150% when wheat was grown without additions of water during the last half of the 100-day growing season. The 27% increase in CO2 from the pre-industrial level of 150 years ago (275 μmol mol–1) to near the current concentration (350 μmol mol–1) increased grain yields of 'Yaqui 54' and 'Seri M82' spring wheats by 55% and 53%, respectively, under well-watered conditions. Yield increased because of greater numbers of grains per spike, rather than heavier grains or numbers of spikes per plant. Water use increased little with CO2 concentration, resulting in improved water use efficiency as CO2 rose. Data suggest that rising CO2 concentration contributed to the substantial increase in average wheat yields in the U.S. during recent decades.  相似文献   

10.
Severe wildfire may cause long-term changes in the soil-atmosphere exchange of carbon dioxide and methane, two gases known to force atmospheric warming. We examined the effect of a severe wildfire 10?years after burning to determine decadal-scale changes in soil gas fluxes following fire, and explored mechanisms responsible for these dynamics. We compared soil carbon dioxide efflux, methane uptake, soil temperature, soil water content, soil O horizon mass, fine root mass, and microbial biomass between a burned site and an unburned site that had similar stand conditions to the burned site before the fire. Compared to the unburned site, soil carbon dioxide efflux was 40% lower and methane uptake was 49% higher at the burned site over the 427-day measurement period. Soil O horizon mass, microbial biomass, fine root mass, and surface soil water content were lower at the burned site than the unburned site, but soil temperature was higher. A regression model showed soil carbon dioxide efflux was more sensitive to changes in soil temperature at the burned site than the unburned site. The relative importance of methane uptake to carbon dioxide efflux was higher at the burned site than the unburned site, but methane uptake compensated for only 1.5% of the warming potential of soil carbon dioxide efflux at the burned site. Our results suggest there was less carbon available at the burned site for respiration by plants and microbes, and the loss of the soil O horizon increased methane uptake in soil at the burned site.  相似文献   

11.
In Andean forests, Cyathea caracasana grows across a range of successional habitats. This study documents variation in several measures of plant performance (stem growth, leaf production, leaf longevity, and spore production) in C. caracasana growing in open habitat, low-canopy secondary forest, and high-canopy secondary forest, based on 33 mo of observation. In open habitat, C. caracasana displayed significantly higher growth rates, leaf production rates, and leaf turnover than in either of the forested habitats. The highest rates of spore production were also observed in open-habitat individuals, with only one plant in the forest understory producing spores during the study. Despite low growth and no reproduction, I observed no mortality among ferns in the forest understory. These data show that C. caracasana performs best under conditions of full sun but can persist under the closed canopy. This suggests a life history in which periods of rapid growth, spore production, and recruitment in forest gaps alternate with low growth rate and persistence in the understory. A phylogenetic perspective suggests that the habitat flexibility, which might conventionally mark C. caracasana as a habitat generalist, is better interpreted as specialization for the dynamic forest in which it grows.  相似文献   

12.
The estimation of the carbon balance in ecosystems, regions, and the biosphere is currently one of the main concerns in the study of the ecology of global change. Current remote sensing methodologies for estimating gross primary productivity are not satisfactory because they rely too heavily on (i) the availability of climatic data, (ii) the definition of land‐use cover, and (iii) the assumptions of the effects of these two factors on the radiation‐use efficiency of vegetation (RUE). A new methodology is urgently needed that will actually assess RUE and overcome the problems associated with the capture of fluctuations in carbon absorption in space and over time. Remote sensing techniques such as the widely used reflectance vegetation indices (e.g. NDVI, EVI) allow green plant biomass and therefore plant photosynthetic capacity to be assessed. However, there are vegetation types, such as the Mediterranean forests, with a very low seasonality of these vegetation indices and a high seasonality of carbon uptake. In these cases it is important to detect how much of this capacity is actually realized, which is a much more challenging goal. The photochemical reflectance index (PRI) derived from freely available satellite information (MODIS sensor) presented for a 5‐year analysis for a Mediterranean forest a positive relationship with the RUE. Thus, we show that it is possible to estimate RUE and GPP in real time and therefore actual carbon uptake of Mediterranean forests at ecosystem level using the PRI. This conceptual and technological advancement would avoid the need to rely on the sometimes unreliable maximum RUE.  相似文献   

13.
14.
The topography of the tropical Andean forest is steep, resulting in physical conditions that change with the elevation, thus driving a high turnover of insect pollinator species over short distances, which may lead to localized gene dispersal, promoting genetic divergence between plant populations distributed along the elevation gradient. In this study, we characterized the population genetic structure of Anthurium caucanum and A. panduriforme, two closely related species that coexist along the elevation gradient in the Andean forest but differ in inflorescence size and abundance of flower visitors. The sampling of both species covered seven elevation bands, from 2,200 to 2,900 MASL. Five microsatellite loci were used to genotype the sampled individuals. Our results indicated that heterozygosity was high for both species. Genotypic richness was significantly lower for A. caucanum (G/N = 0.45) compared with A. panduriforme (G/N = 0.88), while population differentiation was strong for A. caucanum (Fst = 0.23) but low for A. panduriforme (Fst = 0.03). Assignment analysis suggested a low rate of immigration events for A. caucanum populations and a high gene flow between A. panduriforme populations. Based on the seed production of bagged inflorescences, A. caucanum demonstrated the ability to self-pollinate, while A. panduriforme was considered self-incompatible. In addition, genotypic richness decreased with elevation for A. caucanum. In summary, the contrasting population genetic structure of the two Anthurium species along the elevation gradient appear to be the result of different gene flow rates, mating systems, and life-history traits, such as clonal growth, flowering phenology, and density.  相似文献   

15.
The applicability of two methods of respirometry to measurement of the carbon dioxide output of naturally decaying branches and wood of standing trees was studied. The Warburg respirometer was judged unsuitable for general use on decaying wood. A conductivity respirometer was found satisfactory. Carbon dioxide production was essentially unaffected by fragmentation suggesting that the measurements obtained are likely to be a valuable indication of decay in the intact tree or branch. The carbon dioxide production of samples was fairly stable when conditions were kept constant but responded promptly to increased or decreased moisture. Wood from branches infested with Polyporus tulipiferae in which moisture was increased from approximately 20%–50% (fresh weight basis) increased its carbon dioxide output over a 4-day period by some seven times. Comparable wood in which the moisture content was reduced from 45 to 20 % showed an almost linear reduction in rate over a similar period to about one-sixth the original rate. Rate of decay in stained and unstained zones of living trees showed no consistent effect of the stain. However, rates of decay in heart-rot of poplar caused by Fomes igniarius were only one-third those reported by Verrall (1937) for decay in culture.  相似文献   

16.
Fruit abundance is a critical factor in ecological studies of tropical forest animals and plants, but difficult to measure at large spatial scales. We tried to estimate spatial variation in fruit abundance on a relatively large spatial scale using low altitude, high‐resolution aerial photography. We measured fruit production for all 555 individuals of the arborescent palm Astrocaryum standleyanum across 25 ha of mapped tropical moist forest on Barro Colorado Island, Panama, by visually counting fruits from the ground. Simultaneously, we used high‐resolution aerial photographs to map sun‐exposed crowns of the palm across the same area, which were then linked to ground‐mapped stems. First, we verified that the fruit crop size of individual trees was positively associated with both crown presence on aerial photos and crown area visible on aerial photos. Then, we determined how well spatial variation in Astrocaryum fruit density across the study area was predicted by spatial densities of photo‐detected crowns and crown area compared to spatial densities of ground‐mapped stems and stem diameters. We found a positive association of fruit crop size with crown visibility on aerial photographs. Although representing just one third of all individuals in the study area, photo‐detected crowns represented 57% of all fruits produced. The spatial pattern of photo‐detected crowns was strongly correlated with the spatial pattern of fruit abundance based on direct fruit counts, and correctly showed the areas with the highest and lowest fruit abundances. The spatial density of photo‐detected crowns predicted spatial variation in fruit abundance equally well as did the spatial density of ground‐mapped stems. Photo‐detected crown area did not yield a better prediction. Our study indicates that remote sensing of crowns can be a reliable and cost‐effective method for estimating spatial variation in fruit abundance across large areas for highly distinctive canopy species. Our study is also among the few to provide empirical evidence for a positive relationship between crown exposure of forest trees and fruit production.  相似文献   

17.
Soil carbon dioxide efflux was measured in hummock and hollow niicrohabitals of a subarctic peat bog near Fairbanks, Alaska, during the 1983 growing season. Regardless of the presence of permafrost, hummocks showed a late June or early July peak in soil respiration followed by a gradual decrease. Hollows and wet Carex Lawns showed a gradual increase in soil respiration with no mid-season peaks. Regression equations using soil temperature and soil moisture as independent variables explained 76% of the variance associated with soil carbon dioxide efflux. Sucrose (100 g m−2) applied to a field plot caused a significant increase in soil respiration but nitrogen (5 g m−2) did not. Sequential effects of nitrogen and phosphorus on peat respiration were demonstrated in a laboratory experiment.  相似文献   

18.
森林管理在全球CO2减排中的作用   总被引:16,自引:3,他引:16  
综述了各种森林管理措施在全球CO2减排中的作用.这些管理措施主要包括减少森林砍伐速度,增加森林覆盖面积,加强对现存森林的肥料、火灾及病虫害管理,以薪材替代化石燃料等.同时探讨了中国的森林管理存在的优势和不足.目前中国森林生态系统主要是植被碳库,在全球碳循环过程中扮演着“碳汇”的角色,但其“碳汇”功能较小.因此,如何加强对新建人工林的抚育、病虫害和火灾管理,增强中国森林的“碳汇”功能,充分发挥其在CO2减排中的作用,是我们面临的重要工作  相似文献   

19.
Abstract. We asked whether forest structure and understory light environments across a tropical moist forest chronosequence followed predictions of a 4‐phase model of secondary succession (establishment, thinning, transition and steady‐state) and whether seedling density and diversity were functions of light availability as predicted by this model. Using aerial photographs, we identified eight second‐growth stands (two each aged ca. 20, 40, 70, and 100 yr) and two old‐growth stands within Barro Colorado Nature Monument, Panama. Trees and seedlings were sampled in nested, contiguous quadrats in 2 160‐m transects in each stand. Light was measured as percent transmittance of diffuse photosynthetically active radiation (TPAR) at each seedling quadrat and by estimation of percent total incident radiation during the growing season from hemispherical canopy photographs. Basal area, tree density, and canopy height followed predictions of the 4‐phase model. Percent total radiation, but not TPAR, declined with stand age as did seedling density. While seedlings were more likely to occur in quadrats at higher light levels, much variation in seedling density was not related to light availability. Seedling patch sizes were small irrespective of light patches, estimated as semivariance ranges. Seedling species richness was a function of seedling density; estimates of species diversity unbiased by density did not vary systematically as a function of stand age. Proximate seed sources, efficient dispersal mechanisms, and appropriate establishment conditions can promote establishment of species‐rich communities early in successions of heterogeneous tropical moist forest.  相似文献   

20.
Host-specificity of folivorous insects in a moist tropical forest   总被引:3,自引:0,他引:3  
1. To assess the degree of herbivore host-specificity in the moist tropical forest on Barro Colourado Island, Panama, I conducted an extensive series of feeding trials on the common insect herbivores from 10 tree species.
2. The herbivores were offered leaves from both congeneric and confamilial plant species to their known host species, as well as leaves from the most abundant tree species in the forest.
3. The amount of damage caused by these herbivores to young, expanding leaves was also measured on nine of the tree species.
4. Of 46 herbivores species (seven Coleoptera, one Orthoptera, 38 Lepidoptera), 26% were specialized to a single plant species, 22% were limited to feeding on a single genus and 37% were able to feed on several genera within a single family. The remaining 15% were generalists, able to feed from several different plant families.
5. The causes of leaf damage varied extensively across the tree species. On average, specialist herbivores caused 58% of the damage to young leaves, generalists herbivores 8% and fungal pathogens 34%. For four of the tree species, pathogens were the most important cause of leaf damage.
6. In this forest, most chewing herbivores appear to have fairly narrow diets, and these specialists are responsible for most of the insect herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号