首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: How does the interaction between two dominant shrub species in a coastal sand dune community change during their life history? Does this interaction influence their population dynamics? Location: A semiarid coastal sand dune system in southeast Spain. Methods: For 3 years we monitored physiological status, growth and reproductive effort of Juniperus phoenicea and Pistacia lentiscus, the dominant shrub species, growing either alone or in close spatial association. We also recorded adult mortality patterns and characterized seedling survival, soil properties and microclimate conditions beneath canopies and in bare ground. Results and conclusions: There was a strong bi‐directional interaction between the two studied species, with a net balance that changed in sign with increasing plant development. While mature individuals facilitated the establishment of seedlings of both species, adult mortality patterns suggested asymmetric competition at later life stages. The interaction with Pistacia negatively affected growth of juniper and contributed to its high mortality rates, while juniper had almost no effect on mature Pistacia individuals. Physiological data suggested that Pistacia had a competitive advantage over juniper, most likely because of differences in rooting patterns and tolerance to salinity, which may determine the source of water available for each species. Community dynamics are governed by facilitation at the seedling stage and shaped by differences in physiological traits in adult plants. Plant‐plant interactions, which are strongly affected by environmental gradients, are important drivers of community dynamics in this system.  相似文献   

2.
干旱胁迫对青藏高原6种植物生理指标的影响   总被引:9,自引:0,他引:9  
潘昕  邱权  李吉跃  王军辉  何茜  苏艳  马建伟  杜坤 《生态学报》2014,34(13):3558-3567
以青藏高原6种植物:红花岩黄芪(Hedysarum multijugum Maxim.)、西北沼委陵菜(Comarum salesovianum(Steph.)Asch.et Graebn.)、鲜黄小檗(Berberis diaphana Maxim.)、鲜卑花(Sibiraea laevigata(Linn.)Maxim.)、树锦鸡儿(Caragana arborescens(Amm.)Lam.)、砂生槐(Sophora moorcroftiana(Benth.)Baker)为试材进行干旱胁迫模拟盆栽试验,通过对比6种植物叶片中丙二醛(MDA)、脯氨酸、可溶性蛋白质、叶绿素、可溶性糖、淀粉含量的变化,对供选植物进行抗旱性能分析与评价,为在青藏高原地区筛选优良耐旱植物提供参考依据。设置土壤含水量占田间持水量80%以上为正常水平,50%—70%为轻度干旱,30%—50%为中度干旱,低于30%为重度干旱。研究表明,6种供试植物叶片MDA含量逐渐升高,当土壤含水量占田间持水量12%左右时达到最大值,树锦鸡儿的增幅较另5种苗木最小,而峰值最大。脯氨酸含量都呈增加趋势,其中砂生槐最高,为9981.67mg/g,峰值与对照值相比,砂生槐增加最多为37.43倍,鲜卑花最小为0.49倍。苗木叶片中可溶性蛋白质含量总体表现出现增大后减小的规律,且所有测定值都高于正常水分条件下的含量。6种苗木的叶绿素含量在干旱胁迫下总体呈现先降低再升高最后再降低的趋势,24 d时均低于对照值,下降最多的为西北沼委陵菜(15.43 mg/g)。由于干旱下苗木的光合产物转化受抑,以淀粉形式的累积量减少,所以6种苗木的可溶性糖含量呈上升趋势,而淀粉含量呈下降趋势,通过积累可溶性糖以提高细胞的渗透调节能力。砂生槐、树锦鸡儿的可溶性糖含量增幅与淀粉含量的减少明显高于其余苗木,使其在较低叶水势下仍保持较高的细胞膨压,以减缓水分胁迫的不利影响。主成分分析表明,6种苗木抗旱性由强到弱依次为:树锦鸡儿、红花岩黄芪、砂生槐、鲜黄小檗、鲜卑花、西北沼委陵菜。  相似文献   

3.
Drought stress is one of the most important factors limiting the survival and growth of plants in the harsh karst habitats of southwestern China. Detailed knowledge about the ecophysiological responses of native plants with different growth forms to drought stress could contribute to the success of re-vegetation programs. Two shrubs, Pyracantha fortuneana and Rosa cymosa, and four trees, Broussonetia papyrifera, Cinnamomum bodinieri, Platycarya longipes and Pteroceltis tatarinowii, were randomly assigned to four drought treatments, i.e. well-watered, mild drought stress, moderate drought stress, and severe drought stress. Midday water potential, the maximum quantum efficiency of PSII photochemistry (Fv/Fm), pigments, osmotic solutes (soluble sugars and proline), cellular damages, and antioxidant enzymes (superoxide dismutase, catalase and peroxidase) were investigated. Drought stress significantly decreased pigments content, but increased the ratio of carotenoids to total chlorophylls in the studied species. After prolonged severe drought stress, the two shrubs exhibited higher Fv/Fm, less reductions of midday water potential, and lower increases of malondialdehyde content and ion leakage than the four trees. Prolonged severe drought stress largely decreased accumulations of osmotic solutes and activities of antioxidant enzymes in the four trees, but significantly increased proline content and superoxide dismutase activity in the two shrubs and peroxidase activity in P. fortuneana. The positive relationships were observed among activities of antioxidant enzymes, and between contents of osmotic solutes and activities of antioxidant enzymes. These findings suggested that the two shrubs had higher tolerance to severe drought stress than the four trees due to higher capacities of osmotic adjustment and antioxidant protection.  相似文献   

4.
Groundwater is increasingly becoming a permanent and steady water source for the growth and reproduction of desert plant species due to the frequent channel cutoff events in arid inland river basins. Although it is widely acknowledged that the accessibility of groundwater has a significant impact on plant species maintaining their ecological function, little is known about the water use strategies of desert plant species to the groundwater availability in Daryaboyi Oasis, Central Tarim Basin. This study initially determined the desirable and stressing groundwater depths based on ecological and morphological parameters including UAV‐based fractional vegetation cover (FVC) images and plant growth status. Then, leaf δ13C values of small‐ and big‐sized plants were analyzed to reveal the water use strategies of two dominant woody species (Populus euphratica and Tamarix ramosissima) in response to the groundwater depth gradient. The changes in FVC and growth status of plants suggested that the actual groundwater depth should be kept at an appropriate range of about 2.1–4.3 m, and the minimum groundwater depth should be less than 7 m. This will ensure the protection of riparian woody plants at a normal growth state and guarantee the coexistence of both plant types. Under a desirable groundwater condition, water alternation (i.e., flooding and rising groundwater depth) was the main factor influencing the variation of plant water use efficiency. The obtained results indicated that big‐sized plants are more salt‐tolerant than small ones, and T. ramosissima has strong salt palatability than Peuphratica. With increasing groundwater depth, P. euphratica continuously decreases its growth status to maintain hydraulic efficiency in drought condition, while T. ramosissima mainly increases its water use efficiency first and decreases its growth status after then. Besides, in a drought condition, T. ramosissima has strong adaptability than Peuphratica. This study will be informative for ecological restoration and sustainable management of Daryaboyi Oasis and provides reference materials for future research programs.  相似文献   

5.
Anthyllis cytisoides and Spartium junceum are two leguminous shrubs native of semiarid mediterranean areas, often used in revegetation strategies. Mycorrhization of both shrubs with Glomus intraradices BEG 72 enhanced both plants growth and water relations under drought stress. Root colonization achieved by Glomus mosseae was lower than the level achieved by G. intraradices in both plants studied, and the effects of the inoculation with G. mosseae BEG 116 were less positive than those observed for G. intraradices. Before the onset of the drought stress period the specific leaf weight (SLW) of S. junceum plants inoculated with G. mosseae was lower than the SLW of control and G. intraradices plants. At the end of the stress period, after 15 days of withholding water, the relative water content of S. junceum twigs was lower for G. mosseae inoculated plants and higher for G. intraradices inoculated plants, compared to control, non-inoculated plants. At the end of the recovery period, 15 days after the reestablishment of watering, there were no differences between inoculation treatments on the parameters related to the plants water status. Anthyllis cytisoides plants inoculated with G. intraradices had lower leaf osmotic potential, more leaves, and higher chlorophyll content (measured as SPAD values). Anthyllis cytisoides plants responded to drought defoliating, but defoliation was lower for the plants inoculated with G. intraradices. At the end of the drought, the leaf osmotic potential was lowest for G. intraradices plants as was the relative water content (RWC) whilst Glomus mosseae inoculated plants had the highest RWC, SLW and osmotic potential values. At the end of the recovery period, all plants recuperated the osmotic potential values measured at the pre-stress period. In our experiments, G. intraradices BEG 72 was found to be superior to G. mosseae BEG 116, this difference could be attributed to the origin of the fungus, native from a Mediterranean area, compared to G. mosseae (BEG116) isolated from the UK.  相似文献   

6.
Vegetation change from drought-induced mortality can alter ecosystem community structure, biodiversity, and services. Although drought-induced mortality of woody plants has increased globally with recent warming, influences of soil type, tree and shrub groups, and species are poorly understood. Following the severe 2002 drought in northern Arizona, we surveyed woody plant mortality and canopy dieback of live trees and shrubs at the forest–woodland ecotone on soils derived from three soil parent materials (cinder, flow basalt, sedimentary) that differed in texture and rockiness. Our first of three major findings was that soil parent material had little effect on mortality of both trees and shrubs, yet canopy dieback of trees was influenced by parent material; dieback was highest on the cinder for pinyon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma). Ponderosa pine (Pinus ponderosa) dieback was not sensitive to parent material. Second, shrubs had similar mortality, but greater canopy dieback, than trees. Third, pinyon and ponderosa pines had greater mortality than juniper, yet juniper had greater dieback, reflecting different hydraulic characteristics among these tree species. Our results show that impacts of severe drought on woody plants differed among tree species and tree and shrub groups, and such impacts were widespread over different soils in the southwestern U.S. Increasing frequency of severe drought with climate warming will likely cause similar mortality to trees and shrubs over major soil types at the forest–woodland ecotone in this region, but due to greater mortality of other tree species, tree cover will shift from a mixture of species to dominance by junipers and shrubs. Surviving junipers and shrubs will also likely have diminished leaf area due to canopy dieback.  相似文献   

7.
Drought stress is one of the most important factors in limiting the survival and growth of plants in the harsh karst habitats of southwestern China, especially at the seedling establishment stage. The ecophysiological response to drought stress of native plants with different growth forms is useful for re-vegetation programs. Two shrub and four tree species were studied, including Pyracantha fortuneana (evergreen shrub), Rosa cymosa (deciduous shrub), Cinnamomum bodinieri (evergreen tree), and other three deciduous trees, Broussonetia papyrifera, Platycarya longipes, and Pteroceltis tatarinowii. The seedlings were randomly assigned to four drought treatments, i.e., well-watered, mild drought stress, moderate drought stress, and severe drought stress. Leaf water relations, gas exchange, chlorophyll fluorescence, and growth of the seedlings were investigated. Under severe drought stress, the two shrubs with low leaf area ratio (LAR) maintained higher water status, higher photosynthetic capacity, and larger percent biomass increase than the most of the trees. The two shrubs also had lower specific leaf area, greater intrinsic water use efficiency, and thermal dissipation than the trees. This suggested that the two shrubs had high tolerance to severe drought and were suitable for re-vegetation in harsh habitats. The evergreen C. bodinieri exhibited higher leaf mass ratio (LMR) and LAR than the deciduous species under mild and moderate stress. However, the low maximum quantum efficiency of PSII photochemistry (F v/F m) and net assimilation rate, and the sharp decreases of water potential, LMR, LAR, and biomass under severe stress indicated C. bodinieri’s weak tolerance to severe drought. In response to drought stress, the three deciduous trees revealed sharp reductions of biomass due to the large drought-induced decreases of gas exchange, LAR, and LMR. Under drought conditions, the deciduous trees minimized water loss by stomatal closure and by reducing transpiration leaf area and light harvesting through shedding leaves. This suggested that the three deciduous trees were more sensitive to water availability than the shrubs and used avoidance strategies against drought stress. However, the better growth performance of the deciduous trees than that of the shrubs under favorable conditions suggested that deciduous trees could be suitable for habitats with mild and temporary drought stress.  相似文献   

8.
Vegetation in water‐limited ecosystems relies strongly on access to deep water reserves to withstand dry periods. Most of these ecosystems have shallow soils over deep groundwater reserves. Understanding the functioning and functional plasticity of species‐specific root systems and the patterns of or differences in the use of water sources under more frequent or intense droughts is therefore necessary to properly predict the responses of seasonally dry ecosystems to future climate. We used stable isotopes to investigate the seasonal patterns of water uptake by a sclerophyll forest on sloped terrain with shallow soils. We assessed the effect of a long‐term experimental drought (12 years) and the added impact of an extreme natural drought that produced widespread tree mortality and crown defoliation. The dominant species, Quercus ilex, Arbutus unedo and Phillyrea latifolia, all have dimorphic root systems enabling them to access different water sources in space and time. The plants extracted water mainly from the soil in the cold and wet seasons but increased their use of groundwater during the summer drought. Interestingly, the plants subjected to the long‐term experimental drought shifted water uptake toward deeper (10–35 cm) soil layers during the wet season and reduced groundwater uptake in summer, indicating plasticity in the functional distribution of fine roots that dampened the effect of our experimental drought over the long term. An extreme drought in 2011, however, further reduced the contribution of deep soil layers and groundwater to transpiration, which resulted in greater crown defoliation in the drought‐affected plants. This study suggests that extreme droughts aggravate moderate but persistent drier conditions (simulated by our manipulation) and may lead to the depletion of water from groundwater reservoirs and weathered bedrock, threatening the preservation of these Mediterranean ecosystems in their current structures and compositions.  相似文献   

9.
Although plant glutathione transferase (GST) genes are reported to be involved in responses to abiotic stress, few GST genes have been functionally characterized in woody halophytes. In the present study, a GST gene from Tamarix hispida, designated ThGSTZ1, was cloned and functionally characterized. Expression of ThGSTZ1 was downregulated by drought and salinity stress, and abscisic acid. Transgenic Arabidopsis thaliana plants with constitutive expression of ThGSTZ1 showed increased survival rates under drought and salinity stress. These transgenic Arabidopsis plants exhibited increased levels of GST, glutathione peroxidase, superoxide dismutase and peroxidase activity, along with decreased malondialdehyde content, electrolyte leakage rates and reactive oxygen species (ROS) levels under salt and drought stress conditions. Transgenic T. hispida that transiently overexpressed ThGSTZ1 showed increased GST and GPX activities under NaCl and mannitol treatments, as well as improved ROS scavenging ability. These results suggest that ThGSTZ1 can improve drought and salinity tolerance in plants by enhancing their ROS scavenging ability. Therefore, ThGSTZ1 represents a candidate gene with potential applications for molecular breeding to increase stress tolerance in plants.  相似文献   

10.
Patterns in soil moisture availability affect plant survival, growth and fecundity. Here we link patterns in soil moisture to physiological and demographic consequences in Florida scrub plants. We use data on different temporal scales to (1) determine critical soil moisture content that leads to loss of turgor in leaves during predawn measurements of leaf water status (Ψ crit), (2) describe the temporal patterns in the distribution of Ψ crit, (3) analyze the strength of relationship between rainfall and soil moisture content based on 8 years of data, (4) predict soil moisture content for 75 years of rainfall data, and (5) evaluate morphological, physiological and demographic consequences of spring 2006 drought on dominant shrubs in Florida scrub ecosystem in the light of water-uptake depth as determined by stable isotope analysis (δ18O). Based on 1998–2006 data, the soil moisture content at 50 cm depth explained significant variation in predawn leaf water potential of two dominant shrubs, Quercus chapmanii and Ceratiola ericoides (r 2?=?0.69). During 8 years of data collection, leaves attained Ψ crit only during the peak drought of 2000 when the soil moisture fell below 1% by volume at 50 and 90 cm depth. Precipitation explained a significant variation in soil moisture content (r 2?=?0.62). The patterns in predicted soil moisture for 75 year period, suggested that the frequency of drought occurrence has not increased in time. In spring 2006, the soil reached critical soil moisture levels, with consequences for plant growth and physiological responses. Overall, 24% of plants showed no drought-induced damage, 51% showed damage up to 50%, 21% had intense leaf shedding and 2% of all plants died. Over the drought and recovery period (May–October 2006), relative height growth was significantly lower in plants with greater die-back. All species showed a significant depression in stomatal conductance, while all but deep-rooted palms Sabal etonia and Serenoa repens showed significantly lower predawn (Ψ pd) and mid-day (Ψ md) leaf water potential in dry compared to wet season. Plants experiencing less severe die-back exhibited greater stomatal conductance, suggesting a strong relationship between physiology and morphology. Based on results we suggest that the restoration efforts in Florida scrub should consider the soil moisture requirements of key species.  相似文献   

11.
Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR) are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (F v/F m), was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.  相似文献   

12.
13.
This study explores whether male and hermaphrodite plants of Phillyrea angustifolia (Oleaceae) show physiological and structural differences at the leaf level under severe water stress driven by drought and soil salinity. Leaf traits were measured in summer, at the height of the summer drought period, in male and hermaphrodite plants from two adjacent sites under contrasting soil salinity levels. Male plants from the saline site had significantly higher leaf proline content compared to males from the nonsaline site. By contrast, leaf proline levels were similarly low in hermaphrodite plants from both sites. On the other hand, hermaphrodite plants from the saline site had higher leaf stomatal frequency than hermaphrodites from the nonsaline site, whereas this parameter did not differ for male plants across sites. Such differences could be interpreted as the result of two different solutions to the same selective pressure in the androdioecious shrub P. angustifolia.  相似文献   

14.
15.
Salinity and drought are two very important abiotic stressors that negatively impact the growth and yield of all sensitive crop plants. Genes from halophytes have been shown to be useful to engineer crop plants that can survive under adverse soil and water conditions. The present report establishes, for the first time, the physiological role of a class one ADP ribosylation factor gene (SaARF1) from the halophyte Spartina alterniflora (smooth cordgrass) in imparting salinity and drought stress tolerance when expressed in both monocot (rice) and dicot (Arabidopsis) systems. The Arabidopsis and rice plants overexpressing ARF1 are many-fold more tolerant to salt and drought than wild-type (WT) plants. The transgenics exhibited improved growth and productivity relative to WT through tissue tolerance by maintaining higher relative water content and membrane stability, and higher photosynthetic yield by retaining higher chlorophyll concentration and fluorescence under stress conditions compared to WT. These findings indicated that genes from halophyte resources can be useful to engineer and improve salt and drought stress tolerance in both monocot and dicot plants.  相似文献   

16.
The restoration of steep rock faces with shrubs and trees is difficult due to extreme microclimatic and edaphic conditions. In this study, we tested the applicability of free-standing planted gabions to improve the landscape and achieve protection against rockfall, erosion and enhanced surface flow. Furthermore, we analyzed the effect of preconditioning on drought tolerance of several planted species (Ligustrum vulgare, Viburnum lantana, Juniperus communis and Pinus sylvestris).Planted gabions showed sufficient mechanical stability, but survival rates of planted shrubs and trees were reduced by drought stress. Soil water potential on the gabions decreased several times below ?1.4 MPa and soil temperature increased up to 30 °C in summer and decreased below ?6 °C in winter. The percentage of surviving individuals was correlated with the species’ resistance to drought-induced embolism. Drought tolerance was overall higher in conifer species, while angiosperm species were able to shift their vulnerability thresholds upon preconditioning.We conclude that free-standing planted gabions may be an alternative technique for restoration and securing of critical parts of steep rocky slopes. Preconditioning of plant material used for restoration of drought-prone sites can increase the drought tolerance of some species.  相似文献   

17.
This paper analyzes the effect of the canopy age of Guiera senegalensis J.F. Gmel on water regulation processes and adaptative strategy to drought over a period of 2 years. The species is widespread in the agricultural Sahel. Before sowing, farmers cut back the shrubs to limit competition with crops. The stumps resprout after the millet harvest. Leaf water potential and stomatal conductance were measured in two fallows and in the two adjacent cultivated fields. Leaf transpiration rate and soil-to-leaf hydraulic conductance were deduced. The decrease in both stomatal and plant hydraulic conductance caused by seasonal drought was greater in mature shrubs than in current year resprouts. The decrease in predawn and midday leaf water potentials in response to seasonal drought was isohydrodynamic, and it was greater in mature shrubs, suggesting that current year resprouts are under less stress. In resprouts, the leaf transpiration rate stopped increasing beyond a hydraulic conductance threshold of 0.05 mol. m?2 s?1 MPa?1. Vulnerability to cavitation was determined on segments of stems in the laboratory. The leaf water potential value at which stomatal closure occurred was ?2.99 ± 0.68 MPa, which corresponded to a 30 % loss in xylem conductivity. Thanks to its positive safety margin of 0.6 MPa, G. senegalensis can survive above this value. The observed strategy places G. senegalensis among the non-extreme xeric plants, leading us to suppose that this species will be vulnerable to the expected increase in regional drought.  相似文献   

18.
A. Berger  P. Heurteaux 《Plant Ecology》1985,62(1-3):327-333
The ‘Bois des Rièges’ woodland occurs on the relic littoral dunes in the National Reserve of the Camargue. Although surrounded by brackish ponds and saline lands with very salt groundwater close to the surface, the dunes are covered with non-halophytic vegetation of herbaceous shrubs and trees, including the dominant shrub Juniperus phoenicea. This is due to the presence of a freshwater lens beneath the dunes supplied by rains, and floating in hydrodynamic equilibrium upon the saline aquifer. The importance and duration of the freshwater stock depends on the precipitation-evapotranspiration balance as well as on the size of the dune. From the end of the spring to the autumn rain period this freshwater stock is considerably reduced, while the capillary potential in the zone of aeration of soil and the osmotic potential of the soil solution, influenced by capillary rise of the brackish groundwater, decrease. In summer the vegetation is thus subjected to severe drought caused by lack of water or salt excess, to which it must adjust its biological activity. The water relationships in the soil-plant system have been studied along a transect between the top and the borders of a dune surrounded by saline lands. Using simultaneous water potential measurements of the sunny and shady sides of Juniperus trees daily and seasonal transpiration regulations were studied. The preliminary results indicate that trees on the border of the dune as well as on tops are absorbing water from the same freshwater lens in the middle of the dune.  相似文献   

19.
塔里木河下游柽柳ABA累积对地下水位和土壤盐分的响应   总被引:3,自引:0,他引:3  
庄丽  陈亚宁  李卫红  吕新 《生态学报》2007,27(10):4247-4251
近年来发现在逆境下(干旱、低温、高温、盐渍等)的植物体内大量积累ABA,从而引导人们去研究ABA与植物抗逆性之间的关系。在塔里木河下游地区影响植被正常生长发育的各种胁迫因子中,地下水位和土壤盐分是导致"绿色走廊"衰败的主要因素。柽柳是塔里木河下游荒漠植被的主体,对于改善生态环境、遏制沙漠化、保护生物多样性等诸多方面具有重要作用。因此,研究柽柳和地下水位以及土壤盐分的关系,对于维护塔里木河流域天然植被赖以生存的环境,保护柽柳这一重要的生物资源,维持生态平衡的良性循环具有重要意义。运用国际通用软件SAS6.12对塔里木河下游柽柳ABA和地下水位以及土壤盐分进行相关分析表明,柽柳ABA含量与地下水位呈极显著正相关,相关系数R=0.80305(显著性程度P=0.0003);与土壤盐分呈显著负相关,相关系数R=-0.59036(显著性程度P=0.0205)。由各断面柽柳ABA含量变化与地下水位和土壤盐分关系分析结果可以初步推断:3.12m的地下水位和0.96g/L的土壤盐分已经威胁到柽柳的正常生长发育,地下水位超过5.59m、土壤盐分大于1.61g/L则会对柽柳造成严重胁迫。在恢复和保育塔里木河流域天然植被的过程中,应该把对植被造成胁迫的外界条件的成因和植被自身的抗旱、抗盐等抗逆特性结合起来进行考虑:根据耐旱耐盐植被的合理生态水(盐)位,在主河道两岸维持一定范围的地下水位,使乔木、灌木、草本植被能良好地生长,发挥多种生态功能,这样既可以避免水资源的浪费又能充分发挥生态输水的功效,有利于从根本上解决"绿色走廊"的问题。  相似文献   

20.
Abiotic stresses, especially salinity and drought, are major limiting factors for plant growth and crop productivity. In an attempt to develop salt and drought tolerant tomato, a DNA cassette containing tobacco osmotin gene driven by a cauliflower mosaic virus 35S promoter was transferred to tomato (Solanum lycopersicum) via Agrobacterium-mediated transformation. Putative T0 transgenic plants were screened by PCR analysis. The selected transformants were evaluated for salt and drought stress tolerance by physiological analysis at T1 and T2 generations. Integration of the osmotin gene in transgenic T1 plants was verified by Southern blot hybridization. Transgenic expression of the osmotin gene was verified by RT-PCR and northern blotting in T1 plants. T1 progenies from both transformed and untransformed plants were tested for salt and drought tolerance by subjecting them to different levels of NaCl stress and by withholding water supply, respectively. Results from different physiological tests demonstrated enhanced tolerance to salt and drought stresses in transgenic plants harboring the osmotin gene as compared to the wild-type plants. The transgenic lines showed significantly higher relative water content, chlorophyll content, proline content, and leaf expansion than the wild-type plants under stress conditions. The present investigation clearly shows that overexpression of osmotin gene enhances salt and drought stress tolerance in transgenic tomato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号