首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy-positive sewage treatment can be achieved by implementation of oxygen-limited autotrophic nitrification/denitrification (OLAND) in the main water line, as the latter does not require organic carbon and therefore allows maximum energy recovery through anaerobic digestion of organics. To test the feasibility of mainstream OLAND, the effect of a gradual temperature decrease from 29 to 15 °C and a chemical oxygen demand (COD)/N increase from 0 to 2 was tested in an OLAND rotating biological contactor operating at 55–60 mg NH4 +–N?L?1 and a hydraulic retention time of 1 h. Moreover, the effect of the operational conditions and feeding strategies on the reactor cycle balances, including NO and N2O emissions were studied in detail. This study showed for the first time that total nitrogen removal rates of 0.5 g N?L?1?day?1 can be maintained when decreasing the temperature from 29 to 15 °C and when low nitrogen concentration and moderate COD levels are treated. Nitrite accumulation together with elevated NO and N2O emissions (5 % of N load) were needed to favor anammox compared with nitratation at low free ammonia (<0.25 mg N?L?1), low free nitrous acid (<0.9 μg N?L?1), and higher DO levels (3–4 mg O2?L?1). Although the total nitrogen removal rates showed potential, the accumulation of nitrite and nitrate resulted in lower nitrogen removal efficiencies (around 40 %), which should be improved in the future. Moreover, a balance should be found in the future between the increased NO and N2O emissions and a decreased energy consumption to justify OLAND mainstream treatment.  相似文献   

2.

In this research, a novel packed anoxic/oxic moving bed biofilm reactor (MBBR) was established to achieve high-organic matter removal rates, despite the carbon/nitrogen (C/N) ratio of 2.7–5.1 in the influent. Simultaneous nitrification–denitrification (SND) was investigated under a long sludge retention time of 104 days. The system exhibited excellent performance in pollutant removal, with chemical oxygen demand and total nitrogen (TN) enhanced to 93.6–97.4% and 34.4–60%, respectively. Under low C/N conditions, the nitrogen removal process of A/O MBBR system was mainly achieved by anaerobic denitrification. The increase of C/N ratio enhanced SND rate of the aerobic section, where dissolved oxygen was maintained at the range of 4–6 mg/L, and resulted in higher TN removal efficiency. The microbial composition and structures were analyzed utilizing the MiSeq Illumina sequencing technique. High-throughput pyrosequencing results indicated that the dominant microorganisms were Proteobacteria and Bacteroidetes at the phylum level, which contributes to the removal of organics matters. In the aerobic section, abundances of Nitrospirae (1.12–29.33%), Burkholderiales (2.15–21.38%), and Sphingobacteriales (2.92–11.67%) rose with increasing C/N ratio in the influent, this proved that SND did occur in the aerobic zone. As the C/N ratio of influent increased, the SND phenomenon in the aerobic zone of the system is the main mechanism for greatly improving the removal rate of TN in the aerobic section. The C/N ratio in the aerobic zone is not required to be high to exhibit good TN removal performance. When C/NH4+ and C/TN in the aerobic zone were higher than 2.29 and 1.77, respectively, TN removal efficiency was higher than 60%, which means that carbon sources added to the reactor could be saved. This study would be vital for a better understanding of microbial structures within a packed A/O MBBR and the development of cost-efficient strategies for the treatment of low C/N wastewater.

  相似文献   

3.
Subsurface horizontal flow constructed wetlands are being evaluated for nitrogen (N) and phosphorus (P) removal from wastewater in this study through different gravel sizes, plant densities (Iris pseudacorus), effects of retention times (1 to 10 days) on N and P removal in continuously fed gravel wetland. The inlet and outlet samples were analyzed for TKN, NH4-N, and NO3-N, as standard methods. The planted wetland reactor with fine (SG) and coarse (BG) gravels removed 49.4% and 31.4% TKN, respectively, while unplanted reactors removed 43.4% and 26.8% TKN. Also, the efficiencies for NH4-N were 36.7–43% and 21.6–25.4% for SG and BG planted reactors, respectively. The efficiencies for NO3-N were 53.5–62.5% and 21.6–25.4% for SG and BG planted reactors, respectively. Roles of plants in SG reactors for O-PO4 were 5–12% and 3–8% in BG. Also, the roles of plants in the reactors for TP were 9% and 7.4%. The minimum effective detention time for the removal of NO3-N was 4–5 days. The subsurface constructed wetlands planted with I. pseudacorus can be an appropriate alternative in wastewater treatment natural system in small communities.  相似文献   

4.
The effects of COD/N ratio (3-6) and salt concentration (0.5-2%) on organics and nitrogen removal efficiencies in three bench top sequencing batch reactors (SBRs) with synthetic wastewater and one SBR with fish market wastewater were investigated under different operating schedules. The solids retention time (SRT, 20-100 days) and aeration time (4-10h) was also varied to monitor the performance. For synthetic wastewater, chemical oxygen demand (COD) removal efficiencies were consistently greater than 95%, irrespective of changes in COD/N ratio, aeration time and salt concentrations. Increasing the salt concentrations decreased the nitrification efficiency, while high COD/N ratio's favored better nitrogen removal (>90%). The treatment of real saline wastewater ( approximately 3.2%) from a fish market showed high COD (>80%) and nitrogen (>40%) removal efficiencies despite high loading rate and COD/N fluctuations, which is due to the acclimatization of the biomass within the SBR.  相似文献   

5.
The performance of a liquid–solid circulating fluidized bed bioreactor (LSCFB) with anoxic and aerobic beds and lava rock as a biofilm carrier media was used to investigate the impact of the COD/N ratio on the process performance, with particular focus on total nitrogen removal. Three different COD/N ratios of 10:1, 6:1 and 4:1 were tested at an empty bed contact time of 0.82 h. More than 90% of the influent organic matter was removed throughout the study with 58% removal in the anoxic column in Phase III. Total nitrogen removal efficiencies in Phases I–III were 91%, 82% and 71% and simultaneous nitrification–denitrification (SND) occurred in the aerobic downer. The LSCFB demonstrated tertiary effluent quality at COD/N ratio of 10:1 and 6:1 with soluble biochemical oxygen demand (SBOD) <10 mg l?1 and total nitrogen (TN) <10 mg l?1.  相似文献   

6.
The present research was conducted to simultaneously optimize biogas upgrading and carbon and nutrient removal from centrates in a 180-L high-rate algal pond interconnected to an external CO2 absorption unit. Different biogas and centrate supply strategies were assessed to increase biomass lipid content. Results showed 99 % CO2 removal efficiencies from simulated biogas at liquid recirculation rates in the absorption column of 9.9 m3 m?2 h?1, concomitant with nitrogen and phosphorus removal efficiencies of 100 and 82 %, respectively, using a 1:70 diluted centrate at a hydraulic retention time of 7 days. The lipid content of the harvested algal–bacterial biomass remained low (2.9–11.2 %) regardless of the operational conditions, with no particular trend over time. The good settling characteristics of the algal–bacterial flocs resulted in harvesting efficiencies over 95 %, which represents a cost-effective alternative for algal biomass reutilization compared to conventional physical–chemical techniques. Finally, high microalgae biodiversity was found regardless of the operational conditions.  相似文献   

7.
The process of nitrification–denitrification via nitrite for nitrogen removal under real-time control mode was tested in two laboratory-scale sequencing batch reactors (SBRs) with flocculent activated sludge (R1) and aerobic granular sludge (R2) to compare operational performance and real-time control strategies. The results showed that the average ammonia nitrogen, total inorganic nitrogen (TIN), and chemical oxygen demand (COD) removal during aeration phase were 97.6%, 57.0%, and 90.1% in R2 compared with 98.6%, 48.7%, and 88.1% in R1. The TIN removed in both SBRs was partially due to the presence of simultaneous nitrification–denitrification via nitrite, especially in R2. The specific nitrification and denitrification rates in R2 were 0.0416 mgNH4+–N/gSS-min and 0.1889 mgNOX–N/gSS-min, which were 1.48 times and 1.35 times that of R1. The higher rates for COD removal, nitrification, and denitrification were achieved in R2 than R1 with similar influent quality. Dissolved oxygen (DO), pH, and oxidization reduction potential, corresponding to nutrient variations, were used as diagnostic parameters to control the organic carbon degradation and nitrification–denitrification via nitrite processes in both SBRs. The online control strategy of granular SBR was similar to that of the SBR with flocculent activated sludge. However, a unique U-type pattern on the DO curve in granular SBR was different from SBR with flocculent activated sludge in aerobic phase.  相似文献   

8.
Poultry manure contains high levels of ammonia, which result in a suboptimal bioconversion to methane in anaerobic digesters (AD). A simultaneous process of nitrification, Anammox and denitrification (SNAD) in a continuous granular bubble column reactor to treat the anaerobically digested poultry manure was implemented. Thus, two strategies to achieve high efficiencies were proposed in this study: (1) ammonia overload to suppress nitrite oxidizing bacteria (NOB) and (2) gradual adaptation of the partial nitrification–Anammox (PN–A) biomass to organic matter. During the NOB-suppression stage, microbial and physical biomass characterizations were performed and the NOB abundance decreased from 31.3% to 3.3%. During the adaptation stage, with a nitrogen loading rate of 0.34 g L−1 d−1, a hydraulic retention time of 1.24 d and an influent COD/N ratio of 2.63 ± 0.02, a maximum ammonia and total nitrogen removal of 100% and 91.68% were achieved, respectively. The relative abundances of the aerobic and the anaerobic ammonia-oxidizing bacteria were greater than 35% and 40% respectively, during the study. These strategies provided useful design tools for the efficient removal of nitrogen species in the presence of organic matter.  相似文献   

9.
Small pilot ponds in a glasshouse at the Scottish Agricultural College (Auchincruive) were used to investigate the effects of changing C:N:P loading rate and retention time on pond performance as measured by nutrient removal and dry matter biomass. One experiment investigated ponds operated at two C:N:P ratios: low (9:7:1) and high (104:10:1) and two retention times (4 and 7 days θ. Increasing retention time from 4 to 7 days increased the concentration of total (dry matter) and algal (chlorophyll a) biomass and the degree of nitrification. It also increased removal of phosphorus, but had no effect on nitrogen or COD removal. Cyanobacteria predominated in ponds operated at both 4 and 7 days, and the density of cyanobacteria increased with increased retention time. Nitrogen removal was independent of C:N:P ratio; indeed the lower C:N:P ratio favoured increased nitrification. A high C:N:P ratio increased phosphorus and COD removal and increased the concentration of algal biomass (chlorophyll a), but had little effect on total biomass (dry matter). A second experiment varied COD loading rate (600, 350 and 100 kg COD ha-1 d-1) while maintaining a constant retention time (either 5 or 7 days θ). Species composition was independent of retention time. The longer retention time increased both total and algal biomass concentration and also percentage of nitrogen removed. Nitrification was independent of retention time. Increasing loading rate increased dry matter production and resulted in a predominance of cyanobacteria over Chlorophyceae. Increased loading rate was related to increase in nitrogen removal, however more complete nitrification occurred at low COD loading rates. Phosphorus removal in the pond with 5-day (θ) remained constant independent of loading rate, but in the pond with 7-day θ phosphorus removal increased with increased COD loading. COD removal was independent of both retention time and loading rate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
Fu Z  Yang F  Zhou F  Xue Y 《Bioresource technology》2009,100(1):136-141
A modified membrane bioreactor (MBR) system has been developed to evaluate the efficiency of nutrient removal in treating synthetic high strength water. This study examined the effect of influent COD/N ratio on this system. Results showed that above 95.0% removal efficiencies of organic matter were achieved; indicating COD removal was irrespective of COD/N ratio. The average removal efficiencies of total nitrogen (TN) and phosphate (PO(4)(3-)-P) with a COD/N ratio of 9.3 were the highest at 90.6% and 90.5%, respectively. Furthermore, TN removal was primarily based on simultaneous nitrification and denitrification (SND) process occurred in the aerobic zone. Decreased COD/N ratios to 7.0 and 5.3, TN removal efficiencies in steady-states were 69.3% and 71.2%, respectively. Both aerobic SND and conventional biological nitrification/denitrification contributed to nitrogen removal and the latter played dominant effect. PO(4)(3-)-P-release and uptake process ceased in steady-states of COD/N 7.0 and 5.3, which decreased its removal efficiency significantly.  相似文献   

11.
Aerobic granular sludge was successfully cultivated with the effluent of internal circulation (IC) reactor in a pilot-scale sequencing batch reactor (SBR) using activated sludge as seeding sludge. N removal was investigated in the start-up of aerobic granulation process. Initially, the phenomenon of partial nitrification was observed and nitrite accumulation rates (NO2 ?-N/NO x ? -N) were between 84.6 and 99.1?%. It was potentially caused by ammonium oxidizing bacteria (AOB) in the seeding activated sludge, high external environmental temperature (~32?°C) and free ammonia (FA) concentration. After 50?days’ running, the aerobic granules-based bioreactor demonstrated perfect performance in simultaneous removal of organic matter and ammonia nitrogen, and average removal efficiencies were maintained above 93 and 96?%, respectively. The maximum nitrogen removal efficiency of 83.1?% was achieved after the formation of aerobic granules. The average diameter of mature aerobic granular sludge mostly ranged from 0.5 to 1.0?mm. Furthermore, one typical cyclic test indicated that pH and DO profiles could be used as effective parameters for biological reactions occurring in the aerobic/anoxic process. The obtained results could provide further information on the cultivation of aerobic granular sludge with practical wastewater, especially with regard to nitrogen-rich industrial wastewater.  相似文献   

12.
Microorganism with simultaneous nitrification and denitrification ability plays a significant role in nitrogen removal process, especially in the eutrophic waters with excessive nitrogen loads. The nitrogen removal capacity of microorganism may suffer from low temperature or nitrite nitrogen source. In this study, a hypothermia aerobic nitrite-denitrifying bacterium, Pseudomonas tolaasii strain Y-11, was selected to determine the simultaneous nitrification and denitrification ability with mixed nitrogen source at 15 °C. The sole nitrogen removal efficiencies of strain Y-11 in simulated wastewater were obtained. After 24 h of incubation at 15 °C, the ammonium nitrogen fell below the detection limit from an initial value of 10.99 mg/L. Approximately 88.0 ± 0.33% of nitrate nitrogen was removed with the initial concentration of 11.78 mg/L and the nitrite nitrogen was not detected with the initial concentration of 10.75 mg/L after 48 h of incubation at 15 °C. Additionally, the simultaneous nitrification and denitrification nitrogen removal ability of P. tolaasii strain Y-11 was evaluated using low concentration of mixed NH4+-N and NO3?–N/NO2?–N (about 5 mg/L-N each) and high concentration of mixed NH4+–N and NO3?–N/NO2?–N (about 100 mg/L-N each). There was no nitrite nitrogen accumulation at the time of evaluation. The results demonstrated that P. tolaasii strain Y-11 had higher simultaneous nitrification and denitrification capacity with low concentration of mixed inorganic nitrogen sources and may be applied in low temperature wastewater treatment.  相似文献   

13.
Vegetation coverage is considered to be a key factor controlling nitrogen removal in wetlands. We describe the use of newly designed stainless steel incubation chambers to detect shifts in the in situ nitrate reduction activities associated to areas covered with common reed (Phragmites australis) and cattail (Typha latifolia) in the sediment of a free water surface constructed wetland (FWS-CW). Activities were measured at six different positions and times of the year and were related to physicochemical and hydraulic variables. Mean nitrate + nitrite reduction activities varied from 11.1 to 69.4 mg N/m2/h and showed a high variability within sediment types. Ammonification rates accounted for roughly 10% of the total nitrate reduction and were especially relevant in vegetated areas. Measured activities were highly above total nitrogen removal efficiencies estimated in the three parallel treatment cells of the Empuriabrava FWS-CW, indicating the potentiality of the system. In situ nitrate reduction activities correlated well with physichochemical characteristics such as pH and temperature. Additionally, differences in the total nitrogen removal efficiencies were detected between the three treatment cells and were related to changes in the water retention time. The plant species effect was detected in treatment cells of comparable hydraulic loads in which vegetation belts dominated by Typha latifolia were shown to have greater nitrogen removal efficiencies.  相似文献   

14.
Hwang S  Jang K  Jang H  Song J  Bae W 《Biodegradation》2006,17(1):19-29
Nitrous oxide (N2O) emission from biological nitrogen removal (BNR) processes has recently received more research attention. In this study, two lab-scale BNR systems were used to investigate the effects of various operating parameters including the carbon to nitrogen (C/N) ratio, ammonia loading, and the hydraulic retention time on N2O production. The first system was operated in a conventional BNR mode known as the Ludzack–Ettinger (LE) process, consisting of complete denitrification and nitrification reactors, while the second one was operated in a shortcut BNR (SBNR) mode employing partial nitrification and shortcut denitrification, which requires less oxygen and carbon sources. As the C/N ratio was decreased, a significant increase in N2O production was observed only in the anoxic reactor of the LE process, indicating that N2O was released as an intermediate of the denitrification reaction under the carbon-limited condition. However, the SBNR process did not produce significant N2O even at the lowest C/N ratio of 0.5. When the SBNR process was subjected to increasing concentrations of ammonia, N2O production from the aerobic reactor was rapidly increased. Furthermore, the increasing production of N2O was observed mostly in the aerobic reactor of the SBNR process with a decline in hydraulic retention time. These experimental findings indicated that the increase in N2O production was closely related to the accumulation of free ammonia, which was caused by an abrupt increase of the ammonium loading. Consequently, the partial nitrification was more susceptible to shock loading conditions, resulting in a high production of N2O, although the SBNR process was more efficient with respect to nitrogen removals as well as carbon and oxygen requirements.  相似文献   

15.
16.
Effect of synthetic wastewater composition on COD removal performance of a continuous column bioreactor with recycle was studied. Zooglea ramigera was used as dominant microbial culture throughout the experiments. Synthetic wastewater was composed of diluted molasses, urea, KH2PO4 and MgSO4. Wastewater composition was changed by adjusting influent COD/N/P ratio between 100/7/1-100/15/1. System was operated with nitrogen and COD limitations and COD removal performances were compared. Both nitrogen and COD removal efficiencies and rates were calculated and optimum feed COD/N ratio was determined to be between 100/8-100/10.This project was supported by the Scientific and Technical Research Council of Türkiye.  相似文献   

17.
Fan  Ziyun  Liang  Zhiwei  Luo  Ancheng  Wang  Yunlong  Ma  Yuanyuan  Zhao  Yi  Lou  Xiansheng  Jia  Ruijie  Zhang  Yan  Ping  Shaowei 《Biodegradation》2021,32(4):403-418

The discharge of ammonia–nitrogen (NH3–N), total nitrogen (TN), chemical oxygen demand (COD), and total phosphorus (TP) in rural sewage usually exceeds the Pollutant Discharge Standard for Urban Sewage Treatment Plants (GB18918-2002). Efficient and cost-effective removal of these pollutants cannot be simultaneously realized using conventional rural sewage treatment methods. Thus, an assembled biological filter (D50?×?W50?×?H113 cm), including a phosphorus removal layer filled with solid polymeric ferric sulfate and alternating aerobic-anaerobic layers, is proposed herein. The aerobic (anerobic) layers were filled with zeolite (zeolite and composite soil) at different intervals. This system was used for the treatment of synthetic sewage having COD: 122.0–227.0 mg/L; NH3–N: 29.1–47.0 mg/L; TN: 28.0–58.0 mg/L; and TP: 2.0–3.8 mg/L. Based on optimal operation conditions (40 L/h reflow rate, without artificial aeration, and 12-h operation cycle), the system showed NH3–N, TN, COD, and TP removal efficiencies of 87.1? ± ?8.1, 83.4? ± ?7.9, 91.0? ± ?9.4, and 80.0? ± ?6.4%, respectively. Further, in the pilot-scale test, under the same optimal parameters, the removal efficiencies of NH3–N, TN, COD, and TP were 78.9? ± ?8.1, 75.4? ± ?7.9, 82? ± ?9.4, and 76? ± ?6.4%, respectively. Furthermore, in the different functional units of the system, a large number of functional bacteria capable of efficiently facilitating the simultaneous removal of the different pollutants from sewage were identified. Therefore, this proposed system, which complies with current environmental discharge regulations, can be a more sustainable approach for the treatment of unattended rural sewage.

Graphic abstract
  相似文献   

18.
The main purpose of this study was to treat organic pollution, ammonia and heavy metals present in landfill leachate by the use of constructed wetland systems and to quantify the effect of feeding mode. The effect of different bedding material (gravel and zeolite surface) was also investigated. A pilot-scale study was conducted on subsurface flow constructed wetland systems operated in vertical and horizontal mode. Two vertical systems differed from each other with their bedding material. The systems were planted with cattail (Typha latifolia) and operated identically at a flow rate of 10 l/day and hydraulic retention times of 11.8 and 12.5 day in vertical 1, vertical 2 and horizontal systems, respectively. Concentration based average removal efficiencies for VF1, VF2 and HF were NH4–N, 62.3%, 48.9% and 38.3%; COD, 27.3%, 30.6% and 35.7%; PO4–P, 52.6%, 51.9% and 46.7%; Fe(III), 21%, 40% and 17%, respectively. Better NH4–N removal performance was observed in the vertical system with zeolite layer than that of the vertical 2 and horizontal system. In contrast, horizontal system was more effective in COD removal.  相似文献   

19.
The biodegradation-electron transfer with sulfur metabolism integrated (BESI®) process was used for the treatment of real flue gas desulfurization wastewater. The BESI® process consists of an anaerobic activated sludge reactor, an anoxic activated sludge reactor, and an aerobic bio-film reactor. The performance of the integrated process was evaluated by the removal efficiencies of organics and nitrogen pollutants. The sulfate in the wastewater was used as an abundant sulfur source to drive the integrated process. The removal efficiencies of chemical oxygen demand, total organic carbon, ammonia nitrogen, and total nitrogen of the integrated process were 87.99, 87.04, 30.77, and 45.17%, respectively. High-throughput 454-pyrosequencing was applied for the analysis of microbial communities in the integrated process. From the anaerobic activated sludge (Sample 1), anoxic activated sludge (Sample 2), and aerobic bio-film (Sample 3), totals of 1701, 1181, and 857 operational taxonomic units were obtained, respectively. The sulfur cycle was associated with the removal of organics and nitrogen pollutants. The sulfate-reducing bacteria participated in the organics removal in the anaerobic reactor, and the sulfide oxidation was related with the denitrification in the anoxic reactor. A complete nitrogen degradation chain was built in the integrated process. Through the degradation chain, the nitrogenous organic pollutants, ammonia nitrogen, and nitrate could be removed. The participant functional bacteria were also detected by pyrosequencing.  相似文献   

20.
The C:N ratio of the pharmaceutical wastewaters is usually suitable for a combination of the anaerobic pretreatment with the high COD removal and aerobic posttreatment with the efficient biological N removal. This kind of anaerobic-aerobic process was tested in semipilot scale by using a UASB reactor and an activated sludge system with a predenitrification (total volume 100 1). It was found that at a total HRT of 2.3 days an average of 97.5% of COD and 73.5% of total N was removed. The UASB reactor was operated at 30°C with a volumetric loading rate of 8.7 kg.m-3.d-1, the efficiency of COD removal was 92.2%. The processes, which take part in the biological removal of nitrogen, especially the nitrification, were running with lower rates than usually observed in aerobic treatment systems.Abbreviations AAO anaerobic anoxic oxic configuration - AOO anaerobic oxic oxic configuration - B V volumetric organic loading rate (kg COD.m-3. d-1) - dB x specific COD removal rate (mg COD. g-1 VSS. d-1) - DNR denitrification rate (mg N–NO3. g-1 VSS. h-1) - ECOD efficiency of COD removal (%) - HRT hydraulic retention time (d) - NR nitrification rate (mg N–NO3. g-1 VSS. h-1) - R recirculation ratio (%) - SBP specific biogas production (m3.kg-1 removed COD) - SRT solids retention time; sludge age (d) - SS suspended solids (g.1-1) - UASB upflow anaerobic sludge blanket reactor - VSS volatile suspended solids (g.1-1)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号