首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Sponges (phylum Porifera) are simple metazoans for which no molecular information on gametogenesis and larval development is available. To support the current study, it was confirmed by histology that oocytes and larvae were produced by the demosponge Suberites domuncula. Three genes/expressed products from S. domuncula whose expression correlated with sexual reproduction were identified and characterized (they are used here as marker genes): i) a receptor tyrosine kinase (RTK) with sequence similarity in the tyrosine kinase domain to fibroblast growth factor receptors; ii) the sex-determining protein FEM1 and iii) the sperm associated antigen (SAA) of triploblasts. Antibodies against the extracellular domain of the RTK specifically stained oocytes and larvae in S. domuncula tissue sections. Induction of these three genes was successful at elevated temperature, a factor which also promotes natural gametogenesis. In situ hybridization analyses revealed that FEM1 and SAA were expressed in those areas in which gametogenesis begins. Our results indicate that genes which play a role in sex determination may be present in Porifera.  相似文献   

3.
The skeleton of demosponges is built of spicules consisting of biosilica. Using the primmorph system from Suberites domuncula, we demonstrate that silicatein, the biosilica-synthesizing enzyme, and silicase, the catabolic enzyme, are colocalized at the surface of growing spicules as well as in the axial filament located in the axial canal. It is assumed that these two enzymes are responsible for the deposition of biosilica. In search of additional potential structural molecules that might guide the mineralization process during spiculogenesis to species-specific spicules, electron microscopic studies with antibodies against galectin and silicatein were performed. These studies showed that silicatein forms a complex with galectin; the strings/bundles of this complex are intimately associated with the surface of the spicules and arranged concentrically around them. Collagen fibers are near the silactein/galectin complexes. The strings/bundles formed from silicatein/galectin display a lower degree of orientation than the collagen fibers arranged in a highly ordered pattern around the spicules. These data indicate that species-specific formation of spicules involves a network of (diffusible) regulatory factor(s) controlling enzymatic silica deposition; this mineralization process proceeds on a galectin/collagen organic matrix.  相似文献   

4.
Recently it has been discovered that the formation of the siliceous spicules of Demospongiae proceeds enzymatically (via silicatein) and occurs matrix guided (on galectin strings). In addition, it could be demonstrated that silicatein, if immobilized onto inorganic surfaces, provides the template for the synthesis of biosilica. In order to understand the formation of spicules in the intact organism, detailed studies with primmorphs from Suberites domuncula have been performed. The demosponge spicules are formed from several silica lamellae which are concentrically arranged around the axial canal, harboring the axial filament composed of silicatein. Now we show that the appositional growth of the spicules in radial and longitudinal direction proceeds in the extracellular space along hollow cylinders; their surfaces are formed by silicatein. The extracellularly located spicules are surrounded by sclerocytes which are filled with both electron-dense and electron-poor vesicles; energy dispersive X-ray analysis/scanning electron microscopical studies revealed that the electron-dense vesicles are filled of silicon/silica and therefore termed silicasomes. The release of the content of the silicasomes into the hollow cylinder suggests that the newly formed silica lamella originate there; in addition the data are compatible with the view that the silicatein molecules, attached at the centripetal and centrifugal surfaces, mediate biosilica formation. In a chemical/biomimetical approach silicatein is linked onto the organic material-free spicules after their functionalization with aminopropyltriethoxysilane [amino groups]-poly(acetoxime methacrylate) [reactive ester polymer]-N(epsilon)-benzyloxycarbonyl L-lysine tert-butyl ester-Ni(II); finally His-tagged silicatein is immobilized. The matrix-bound enzyme synthesized a new biosilica lamella. These bioinspired findings are considered as the basis for a technical use/application/utilization of hollow cylinders formed by matrix-guided silicatein molecules for the biocatalytic synthesis of nanostructured tubes.  相似文献   

5.
The role of okadaic acid (OA) in the defense system of the marine demosponge Suberites domuncula against symbiotic/parasitic annelids was examined. Bacteria within the mesohyl produced okadaic acid at concentrations between 32 ng/g and 58 ng/g of tissue (wet weight). By immunocytochemical methods and by use of antibodies against OA, we showed that the toxin was intracellularly stored in vesicles. Western blotting experiments demonstrated that OA also existed bound to a protein with a molecular weight of 35,000 which was tentatively identified as a galectin (by application of antigalectin antibodies). Annelids that are found in S. domuncula undergo apoptotic cell death. OA is one candidate inducer molecule of this process, since this toxin accumulated in these symbionts/parasites. Furthermore, we identified the cDNA encoding the multifunctional prosurvival molecule BAG-1 in S. domuncula; it undergoes strong expression in the presence of the annelid. Our data suggest that sponges use toxins (here, OA) produced from bacteria to eliminate metazoan symbionts/parasites by apoptosis.  相似文献   

6.
The formation of spicules is a complicated morphogenetic process in sponges (phylum Porifera). The primmorph system was used to demonstrate that in the demosponge Suberites domuncula the synthesis of the siliceous spicules starts intracellularly and is dependent on the concentration of silicic acid. To understand spicule formation, a cluster of genes was isolated. In the center of this cluster is the silicatein gene, which codes for the enzyme that synthesizes spicules. This gene is flanked by an ankyrin repeat gene at one side and by a tumor necrosis factor receptor-associated factor and a protein kinase gene at the other side. All genes are strongly expressed in primmorphs and intact animals after exposure to silicic acid, and this expression is restricted to those areas where the spicule formation starts or where spicules are maintained in the animals. Our observations suggest that in S. domuncula a coordinated expression of physically linked genes is essential for the synthesis of the major skeletal elements.  相似文献   

7.
8.
Germanium (Ge), in the form of germanic acid, at a Ge/Si molar ratio of 1.0 inhibits gemmule development and silica deposition in the marine demosponge Suberites domuncula. Lower Ge/Si ratios inhibit the growth in length of the silica spicules (tylostyles) producing short structures, but with relatively normal morphology and close to normal width; spherical protuberances occasionally occur on these spicules. A few of the short spicules possess completely round rather than pointed tips. Many of the latter develop when Ge is added (pulsed) to growing animals, thus inducing a change in spicule type. These results indicate that the growth in length of the axial filament is more sensitive to Ge inhibition than is silica deposition and that pointed spicule tips normally develop because the growth of the axial filament at the spicule tip is more rapid than silica deposition. Newly formed spicules initiate silica deposition at the spicule head but the absence of Ge-induced bulbs as in freshwater spicules (oxeas) leaves open the question of whether there is a silicification center(s) present in Suberites tylostyles. The morphogenesis of freshwater oxeas and of marine tyolstyles appears fundamentally different-bidirectional growth in the former and unidirectional growth in the latter. X-ray analysis demonstrate relatively uniform Ge incorporation into the silica spicules with considerable variation from spicule to spicule in the incorporated level. Increased silicic acid concentration induces the formation of siliceous spheres, suggesting that the axial filament becomes prematurely encased in silica.  相似文献   

9.
The siliceous marine sponge Suberites domuncula is a member of the most ancient and simplest extant phylum of multicellular animals-Porifera, which have branched off first from the common ancestor of all Metazoa. We have determined primary structures of 79 ribosomal proteins (r-proteins) from S. domuncula: 32 proteins from the small ribosomal subunit and 47 proteins from the large ribosomal subunit. Only L39 and L41 polypeptides (51 and 25 residues long in rat, respectively) are missing. The sponge S. domuncula is, after nematode Caenorhabditis elegans and insect Drosophila melanogaster the third representative of invertebrates with known amino acid sequences of all r-proteins. The comparison of S. domuncula r-proteins with r-proteins from D. melanogaster, C. elegans, rat, Arabidopsis thaliana and Saccharomyces cerevisiae revealed very interesting findings. The majority of the sponge r-proteins are more similar to their homologues from rat, than to those either from invertebrates C. elegans and D. melanogaster, or yeast and plant. With few exceptions, the overall sequence conservation between sponge and rat r-proteins is 80% or higher. The phylogenetic tree of concatenated r-proteins from 6 eukaryotic species (rooted with archaeal r-proteins) has the shortest branches connecting sponge and rat. Both model invertebrate organisms experienced recently accelerated evolution and therefore sponge r-proteins very probably better reflect structures of proteins in the ancestral metazoan ribosome, which changed only little during metazoan evolution. Furthermore, r-proteins from the plant A. thaliana are significantly closer to metazoan r-proteins than are those from the yeast S. cerevisiae.  相似文献   

10.
  • 1.1. The protein (mol. wt 28.000) consists of four subunits, which are not equivalent as regards the chemical composition, although all of them lack free terminal amino groups.
  • 2.2. The single subunits also possess different conformations since both photosensitized oxidation studies and acrylamide-quenching experiments of the protein fluorescence emission show that the three tryptophyl residues have a different accessibility to the aqueous solvent.
  • 3.3. Circular dichroism and fluorescence polarization studies suggest that suberitine has a remarkable tight three-dimensional organization: e.g., exposure of suberitine to 6 M urea for several hours is necessary to obtain a general unfolding of the protein molecule.
  相似文献   

11.
The siliceous skeleton of demosponges is constructed of spicules. We have studied the formation of spicules in primmorphs from Suberites domuncula. Scanning electron microscopy and transmission electron-microscopical (TEM) analyses have revealed, in the center of the spicules, an axial canal that is 0.3–1.6 m wide and filled with an axial filament. This filament is composed of the enzyme silicatein, which synthesizes the spicules. TEM analysis has shown that spicule formation starts intracellularly and ends extracellularly in the mesohyl. At the initial stage, the axial canal is composed only of silicatein, whereas membranous structures and fibrils (10–15 nm in width) can later also be identified, suggesting that intracellular components protrude into the axial canal. Antibodies against silicatein have been applied for Western blotting; intracellularly, silicatein is processed to the mature form (24 kDa), whereas the pro-enzyme with the propeptide (33 kDa) is detected extracellularly. Silicatein undergoes phosphorylation at five sites. Immunohistological analysis has shown that silicatein exists in the axial canal (axial filament) and on the surface of the spicules, suggesting that they grow by apposition. Finally, we have demonstrated that the enzymic reaction of silicatein is inhibited by anti-silicatein antibodies. These data provide, for the first time, a comprehensive outline of spicule formation.This work was supported by grants from the European Commission (SILIBIOTEC), the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin) and the International Human Frontier Science Program.  相似文献   

12.
Adell T  Nefkens I  Müller WE 《FEBS letters》2003,554(3):363-368
Until recently, it was assumed that polarity and axis formation have evolved only in metazoan phyla higher than Cnidaria. One key molecule involved in the signal transduction causing tissue polarity is Frizzled, a seven-transmembrane receptor that is activated by the Wnt family of secreted proteins. We report the isolation and characterization of a Frizzled gene from the demosponge Suberites domuncula (Sd-Fz). The deduced polypeptide comprises all characteristic domains known from Frizzled receptors of higher metazoans. In situ hybridization studies show that Sd-Fz is expressed in cells close to the surface of the sponges and in the pinacocytes of some canals. Northern blot analysis demonstrates its upregulation during the formation of three-dimensional sponge cell aggregates in culture. These data provide for the first time experimental evidence that already in the lowest metazoan phylum (Porifera) genes are present which are very likely involved in tissue polarity.  相似文献   

13.
14.
Dissociated cells from marine demosponges retain their proliferation capacity if they are allowed to form special aggregates, the primmorphs. On the basis of incorporation studies and septin gene expression, we show that Fe3+ ions are required for the proliferation of cells in primmorphs from Suberites domuncula. In parallel, Fe3+ induced the expression of ferritin and strongly stimulated the synthesis of spicules. This result is supported by the finding that the enzymatic activity of silicatein, converting organosilicon to silicic acid, depends on Fe3+. Moreover, the expression of a scavenger receptor molecule, possibly involved in the morphology of spicules, depends on the presence of Fe3+. We conclude that iron is an essential factor in proliferative and morphogenetic processes in primmorphs.  相似文献   

15.
This paper records the first example of a demosponge spicule framework in a single specimen of a Devonian stromatoporoid from the Frasnian of southern Belgium. The small sample (2.5 × 2 cm) is a component in a brecciated carbonate from a carbonate mound in La Boverie Quarry 30 km east of Dinant. Because of the small size of the sample, generic identification is not confirmed, but the stromatoporoid basal skeleton is similar to the genus Stromatopora. The spicules are arranged in the calcified skeleton, but not in the gallery space, and are recrystallized as multi‐crystalline calcite. The spicules fall into two size ranges: 10–20 μm diameter and 500–2000 μm long for the large ones and between 5–15 μm diameter and 50–100 μm length for the small ones. In tangential section, the spicules are circular, they have a simple structure, and no axial canal has been preserved. The large spicules are always monaxons, straight or slightly curved styles or strongyles. The spicules most closely resemble halichondrid/axinellid demosponge spicules and are important rare evidence of the existence of spicules in Palaeozoic stromatoporoids, reinforcing the interpretation that stromatoporoids were sponges. The basal skeleton may have had an aragonitic spherulitic mineralogy. Furthermore, the spicules indicate that this stromatoporoid sample is a demosponge.  相似文献   

16.
Marine demosponges (phylum Porifera) are rich sources for potent bioactive compounds. With the establishment of the primmorph system from sponges, especially from Suberites domuncula, the technology to cultivate sponge cells in vitro improved considerably. This progress was possible after the elucidation that sponges are provided with characteristic metazoan cell adhesion receptors and extracellular matrix molecules which allow their cells a positioning in a complex organization pattern. This review summarizes recent data on the cultivation of sponges in aquaria and--with main emphasis--of primmorphs in vitro. It is outlined that silicon and Fe(+++) contribute substantially to the formation of larger primmorphs (size of 10 mm) as well as of a canal system in primmorphs; canals are probably required for an improved oxygen and food supply. We conclude that the primmorph system will facilitate a sustainable use of sponges in the production of bioactive compounds; it may furthermore allow new and hitherto not feasible insights into basic questions on the origin of Metazoa.  相似文献   

17.
Sponges (Porifera) represent the evolutionary oldest multicellular animals. They are provided with the basic molecules involved in cell-cell and cell-matrix interactions. We report here the isolation and characterization of a complementary DNA from the sponge Suberites domuncula coding for the sponge homeobox gene, SUBDOIRX-a. The deduced polypeptide with a predicted Mr of 44,375 possesses the highly conserved Iroquois-homeodomain. We applied in situ hybridization to localize Iroquois in the sponge. The expression of this gene is highest in cells adjacent to the canals of the sponge in the medulla region. To study the expression of Iroquois during development, the in vitro primmorph system from S. domuncula was used. During the formation of these three-dimensional aggregates composed of proliferating cells, the expression of Iroquois depends on ferric iron and water current. An increased expression in response to water current is paralleled with the formation of canal-like pores in the primmorphs. It is suggested that Iroquois expression is involved in the formation of the aquiferous system, the canals in sponges and the canal-like structures in primmorphs.  相似文献   

18.
Sponges (phylum Porifera) represent the phylogenetically oldest metazoan animals. Recently, from the marine sponge Geodia cydonium a first cDNA encoding a putative integrin receptor molecule was isolated. In the present study basic functional experiments have been conducted to test the hypothesis that in sponges integrin polypeptides also function as adhesion molecules and as outside-in signaling molecules. The sponge Suberites domuncula has been used for the experiments because from this sponge only has a cell culture been established. Here we report that aggregation factor (AF)-mediated cell-cell adhesion is blocked by the RGDS peptide which is known to interact with beta integrin. Both RGDS and AF were found to stimulate DNA synthesis within 24 h. The beta subunit of the integrin receptor was cloned from S. domuncula; the estimated 91-kDa molecule comprises the characteristic signatures. Evolutionary conservation of the beta integrin was assessed by comparison with corresponding beta integrin subunits from evolutionary higher metazoan taxa. Addition of RGDS or of AF to isolated cells of S. domuncula causes a rapid (within 1-2 min) increase in the intracellular Ca2+ concentration which is further augmented in the presence of Ca2+. Furthermore, incubation of the cells with RGDS or AF causes an activation of the GTP-binding protein Ras. In addition it is shown that after a prolonged incubation of the cells with RGDS and AF the expression of the genes coding for Ras and for calmodulin is upregulated. These results suggest that the integrin receptor functions in the sponge system not only as adhesion molecule but also as a molecule involved in outside-in signaling.  相似文献   

19.
Cetkovic H  Müller WE  Gamulin V 《Genomics》2004,83(4):743-745
Sponges, the simplest and most ancient phylum of Metazoa, encode in their genome complex and highly sophisticated proteins that evolved together with multicellularity and are found only in metazoan animals. We report here the finding of a Bruton tyrosine kinase (BTK)-like protein in the marine sponge Suberites domuncula (Demospongiae). The nucleotide sequence of one sponge cDNA predicts a 700-aa-long protein, which contains all of the characteristic domains for the Tec family of protein tyrosine kinases (PTKs). The highest homology (38% identity, 55% overall similarity) was found with human BTK and TEC PTKs. Sponge PTK was therefore named BtkSD. Human BTK is involved in the maturation of B cells and mutations in the BTK gene cause X-linked agammaglobulinemia. Kinases from the Tec family are not present in Caenorhabditis elegans and, until now, they were found only in insects and higher animal taxa. Our finding implies that the BTK/TEC genes are of a very ancient origin.  相似文献   

20.
The role of okadaic acid (OA) in the defense system of the marine demosponge Suberites domuncula against symbiotic/parasitic annelids was examined. Bacteria within the mesohyl produced okadaic acid at concentrations between 32 ng/g and 58 ng/g of tissue (wet weight). By immunocytochemical methods and by use of antibodies against OA, we showed that the toxin was intracellularly stored in vesicles. Western blotting experiments demonstrated that OA also existed bound to a protein with a molecular weight of 35,000 which was tentatively identified as a galectin (by application of antigalectin antibodies). Annelids that are found in S. domuncula undergo apoptotic cell death. OA is one candidate inducer molecule of this process, since this toxin accumulated in these symbionts/parasites. Furthermore, we identified the cDNA encoding the multifunctional prosurvival molecule BAG-1 in S. domuncula; it undergoes strong expression in the presence of the annelid. Our data suggest that sponges use toxins (here, OA) produced from bacteria to eliminate metazoan symbionts/parasites by apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号