首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most reptiles thermoregulate to achieve body temperatures needed for biological processes, such as digestion and growth. Temperatures experienced during embryogenesis may also influence post-hatching growth rate, potentially through influencing post-hatching choice of temperatures. We investigated in laboratory settings whether embryonic temperatures (constant 18 °C, 21 °C and 22 °C) influence selected body temperatures (Tsel) of juvenile tuatara (Sphenodon punctatus), providing a possible mechanism for differences in growth rates. We found that incubation temperature does not influence Tsel. Although the average daily mean Tsel was 21.6 ± 0.3 °C, we recorded individual Tsel values up to 33.5 °C in juvenile tuatara, which is higher than expected and above the panting threshold of 31–33 °C reported for adults. We found diel patterns of Tsel of juvenile tuatara, observing a general pattern of two apparent peaks and troughs per day, with Tsel being significantly lower around dawn and at 1500 h than any other time. When comparing our results with other studies on tuatara there is a remarkable consistency in mean Tsel of ~ 21 °C across tuatara of different ages, sizes and acclimatization histories. The ability of juvenile tuatara to withstand a wide range of temperatures supports their former widespread distribution throughout New Zealand and warrants further investigation into their plasticity to withstand climate warming, particularly where they have choices of habitat and the ability to thermoregulate.  相似文献   

2.
Behavioural thermoregulation is important for the success of cool‐climate lizards, and a basis of the cold‐climate hypothesis for the evolution of viviparity in squamate reptiles. The temperature (Tsel) selected by pregnant females in a thermal gradient is considered to be optimal for embryonic development; however, exposure to Tsel throughout pregnancy has been difficult to estimate in small‐bodied lizards as temperature‐sensitive telemetry is impractical. In addition, the value of maternal thermophily during pregnancy is controversial: some studies have shown elevated Tsel, whereas others have found lowered Tsel or no change during pregnancy. We estimated indirectly the overall exposure to Tsel during the 4–5 months of pregnancy of the cool‐climate, sub‐alpine species Oligosoma maccanni (McCann's skink, 3–6 g) from southern New Zealand. The thermal environment available to skinks was modelled using temperature loggers inside validated copper models in basking and retreat sites. Pregnant skinks were able to achieve mean Tsel (28.9 °C) in the field very infrequently (4–15% of each month during the final 4 months of pregnancy). In field thermoregulatory studies, pregnant females did not bask more frequently and did not show altered field body temperature compared with non‐pregnant adults, suggesting that all skinks (whether pregnant or not) thermoregulate maximally whenever conditions allow. Further research on cool‐climate lizards should address the significance for offspring phenotypes of low and variable exposure to Tsel during pregnancy, as well as the significance of temperatures for embryos in maternal bodies (viviparity) versus nest sites (oviparity) arising from differences in maternal body size. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96 , 541–552.  相似文献   

3.
We studied the thermal ecology of the lacertid lizards Lacerta oxycephala and Podarcis melisellensis on the Adriatic island of Vis (Croatia) during summer. These species obviously differ in microhabitat use: L. oxycephala climbs on rocks and stone walls, whereas P. melisellensis is mainly ground-dwelling in vegetation. Since theoretical considerations predict a difference in thermal quality between the species' microhabitats, this system seems to present a good opportunity to test the influence of thermal microhabitat quality on body temperature, thermoregulatory behaviour and evolution of thermal characteristics. Data on thermoregulatory behaviour, body temperatures (Tb) and habitat quality were collected in the field and selected temperatures (Tsel) were estimated in a laboratory thermogradient. Accuracy and effectiveness of thermoregulation were quantified. Thermoregulatory behaviour consisted of timing of activity, selection of places in full sun and near sun-shade transitions, and basking. As predicted, L. oxycephala occupied the microhabitat with the lower thermal quality and had on average a lower Tb. However, L. oxycephala also selected lower temperatures in the experimental thermogradient. Thus, if Tsel can be regarded as the thermoregulatory target, both species proved to be accurate and effective thermoregulators. These results corroborate the "labile view" on the evolution of thermal physiology: both L. oxcephala and P. melisellensis appear to be adapted to their respective thermal microhabitat. This is a surprising conclusion, since earlier studies have found the thermal characteristics of Lacertidae to be evolutionarily rigid.  相似文献   

4.
We examined the contributions of alterations in daily activity and behavioral selection of microhabitat to thermoregulation in a population of the lizard, Ameiva exsul (Teiidae), by combining data on lizard activity with data on the availability of sun-shade patches and operative temperatures (Te). By comparing Te distributions predicted by “no thermoregulation” and “only thermoregulation” hypotheses to those predicted by random use of thermal habitat, we assessed the relative contributions of microhabitat selection and daily activity to regulation of body temperature (Tb). Over the course of a day lizards maintained Tb very close to optimal temperature (Tsel) despite Tes that deviated substantially from Tsel. Data demonstrating a unimodal daily activity pattern reject the hypothesis of uniform activity throughout the day. Also, lizard activity was not positively correlated with the proportion of Tes within Tsel nor negatively correlated with the absolute deviation of available Te from Tsel (de) (“only thermoregulation”). Microsite use by A. exsul deviated significantly from predictions of the “no thermoregulation” hypothesis, but our data could not reject predictions of the “only thermoregulation” hypothesis that lizards would use sun-shade patches relative to the proportion of microsites where Te is within Tsel. Also, lizards appeared to actively select sunlit and partially shaded microsites at different times of day. Thus, despite thermal constraints imposed by the habitat, A. exsul maintained high and relatively constant Tbs throughout its daily activity period and thermoregulated effectively. This appears to be generally representative of West Indian species of Ameiva.  相似文献   

5.
Abstract

We examined the relationship between thermal preference (selected body temperature or “Tsel") and microhabitat temperature of a nocturnal, alpine weta Hemideina maori (Orthoptera: Anostostomatidae), in the southern part of New Zealand. To examine diel variation in thermal preference, we measured Tsel five times over a 24‐h period in the laboratory and compared these temperatures to weta microhabitat temperatures in the wild. Tsel ranged from 4.3 to 29.3°C, but the distribution of temperatures was skewed, towards the cooler end of the thermal gradient, with an overall median and mean of c. 13°C. The frequency of Tsel values was bimodal, with peaks at a relatively narrow range of cool temperatures between 5 and 8°C (33%) and at a slightly broader range of warmer temperatures between 13 and 21 °C (52%). Tsel values did not vary with time of day, but differed significantly between individuals. Comparisons with microhabitat temperature showed that weta at 1250 m a.s.l. on the Rock and Pillar Range, Otago, had only limited opportunity to achieve Tsel and this was only possible during daylight hours, when weta are normally inactive.  相似文献   

6.
Animals that can be active both during day and night offer unique opportunities to identify factors that influence activity pattern. By experimental manipulations of temperatures under constant photoperiod, we aimed to determine if emergence, activity and thermoregulatory behaviour of juvenile tuatara (Sphenodon punctatus) varied at different temperatures (20 °C, 12 °C and 5 °C). To help clarify its activity pattern, we compared tuatara with two lizard species endemic of the South Island of New Zealand for which activity pattern is known and clearly defined: the nocturnal common gecko Woodworthia “Otago/Southland” and the diurnal McCann׳s skink Oligosoma maccanni. Tuatara showed similar responses to both species of lizards. Similar to the diurnal skinks, tuatara emerged quickly at 20 °C and 12 °C while nocturnal geckos took more time to emerge. Like nocturnal geckos, tuatara continued to be active at 5 °C, but only during the day. Interestingly, tuatara shifted from diurno-nocturnal activity at 20 °C and 12 °C to being strictly diurnal at 5 °C. We suggest that this temperature-dependent strategy maximises their survival during cold periods.  相似文献   

7.
Warmer climates have affected animal distribution ranges, but how they may interact with vegetation patterns to affect habitat use, an important consideration for future wildlife management, has received little attention. Here, we use a biophysical model to investigate the potential thermal impact of vegetation pattern on the habitat quality of a high-elevation grassland lizard, Takydromus hsuehshanensis, and to predict the thermal suitability of vegetation for this species in a future warmer climate (assuming 3 °C air temperature increase). We assess the thermal quality of vegetation types in our study area (Taroko National Park in areas >1,800 m) using three ecologically relevant estimates of reptiles: body temperature (T b), maximum active time, and maximum digestive time. The results show that increasing forest canopy gradually cools the microclimates, hence decreasing these estimates. In the current landscape, sunny mountain-top grasslands are predicted to serve as high quality thermal habitat, whereas the dense forests that are dominant as a result of forest protection are too cold to provide suitable habitat. In simulated warmer climates, the thermal quality of dense forests increases slightly but remains inferior to that of grasslands. We note that the impact of warmer climates on this reptile will be greatly affected by future vegetation patterns, and we suggest that the current trend of upslope forest movement found in many other mountain systems could cause disadvantages to some heliothermic lizard species.  相似文献   

8.
The thermal coadaptation hypothesis posits that ectotherms thermoregulate behaviorally to maintain body temperatures (Tb) that maximize performance, such as net energy gain. Huey's (1982) energetics model describes how food availability and Tb interact to affect net energy gain. We tested the thermal coadaptation hypothesis and Huey's energetics model with growth rates of juvenile Yarrow's spiny lizards (Sceloporus jarrovii). We compared the preferred (selected) Tb range (Tsel) of lizards in high and low energy states to their optimal temperature (To) for growth over nine weeks, and determined whether the To for growth depended on food availability. We also measured the same lizards’ resting metabolic rate at five Tbs to test the energetics model assumptions that metabolic cost increases exponentially with Tb and does not differ between energy states. The Tsel of lizards on both diets overlapped with the To for growth. The assumptions of the energetics model were verified, but the To for net energy gain did not depend on food availability. Therefore, we found support for the thermal coadaptation hypothesis. We did not find support for the energetics model, but this may have been due to low statistical power.  相似文献   

9.
Understanding the factors that may affect behavioural thermoregulation of endangered reptiles is important for their conservation because thermoregulation determines body temperatures and in turn physiological functions of these ectotherms. Here we measured seasonal variation in operative environmental temperature (Te), body temperature (Tb), and microhabitat use of endangered crocodile lizards (Shinisaurus crocodilurus) from a captive population, within open and shaded enclosures, to understand how they respond to thermally challenging environments. Te was higher in open enclosures than in shaded enclosures. The Tb of lizards differed between the open and shaded enclosures in summer and autumn, but not in spring. In summer, crocodile lizards stayed in the water to avoid overheating, whereas in autumn, crocodile lizards perched on branches seeking optimal thermal environments. Crocodile lizards showed higher thermoregulatory effectiveness in open enclosures (with low thermal quality) than in shaded enclosures. Our study suggests that the crocodile lizard is capable of behavioural thermoregulation via microhabitat selection, although overall, it is not an effective thermoregulator. Therefore, maintaining diverse thermal environments in natural habitats for behavioural thermoregulation is an essential measure to conserve this endangered species both in the field and captivity.  相似文献   

10.
1.
Various factors affect a reptile's capacity for thermoregulation and most studies have focussed on terrestrial species.
2.
We investigated the thermoregulatory abilities of the yellow anaconda (Eunectes notaeus) in terms of selected body temperature (Tsel), set-point range (Tset) and body posture in terrestrial and aquatic thermal mosaics.
3.
Yellow anacondas selected higher body temperatures (Tb) and have a narrower Tset in a terrestrial environment than in an aquatic one.
4.
Coiled body postures were most frequently observed and were generally associated with higher Tb.
  相似文献   

11.
In the face of climate change there is an urgent need to understand how animal performance is affected by environmental conditions. Biophysical models that use principles of heat and mass transfer can be used to explore how an animal's morphology, physiology, and behavior interact with its environment in terms of energy, mass and water balances to affect fitness and performance. We used Niche Mapper™ (NM) to build a vervet monkey (Chlorocebus pygerythrus) biophysical model and tested the model's ability to predict core body temperature (Tb) variation and thermal stress against Tb and behavioral data collected from wild vervets in South Africa. The mean observed Tb in both males and females was within 0.5 °C of NM's predicted Tbs for 91% of hours over the five-year study period. This is the first time that NM's Tb predictions have been validated against field data from a wild endotherm. Overall, these results provide confidence that NM can accurately predict thermal stress and can be used to provide insight into the thermoregulatory consequences of morphological (e.g., body size, shape, fur depth), physiological (e.g. Tb plasticity) and behavioral (e.g., huddling, resting, shade seeking) adaptations. Such an approach allows users to test hypotheses about how animals adapt to thermoregulatory challenges and make informed predictions about potential responses to environmental change such as climate change or habitat conversion. Importantly, NM's animal submodel is a general model that can be adapted to other species, requiring only basic information on an animal's morphology, physiology and behavior.  相似文献   

12.
Temperate-zone ectotherms experience varying or very low ambient temperatures and may have difficulty in attaining preferred body temperatures. Thus, adaptations to reduce the thermal dependence of physiological processes may be present. We measured the optimal temperature range for sprint speed and compared it with the selected body temperatures (T sel) of two sympatric, cool-temperate lizards: the diurnal skink Oligosoma maccanni and the primarily nocturnal gecko Woodworthia (previously Hoplodactylus) “Otago/Southland”. We also investigated whether time-of-day influenced sprint speed. Contrary to results for other reptiles, we found that time-of-day did not influence speed in either species. For each species, the optimal temperature range for sprinting and T sel overlapped, supporting the ‘thermal coadaptation’ hypothesis. However, the optimal range of temperatures for speed is not always attainable during activity by either species, which have limited opportunities to attain T sel in the field. The thermal sensitivity of sprint speed in these two species does not appear to have evolved to fully match their current thermal environment. More data on cold-adapted species are needed to fully understand physiological adaptation in ectotherms.  相似文献   

13.
This study provides first insights into the energetics of the Nesomyinae, a subfamily of rodents endemic to Madagascar. The ancestral nesomyine colonized Madagascar from Africa ca. 30–15 mya at the onset of Oligocene global cooling. We tested the hypothesis that, contrary to what might be expected from Island Biogeography theory, post-colonization character displacement of thermoregulatory traits was constrained by phylogenetic inertia through climate adaptation. The study was conducted in the Parc National d’Ankarafantsika, Madagascar. We measured the basal metabolic rate (BMR) and body temperature (T b) patterns of naturally warm-acclimated, freshly captured adult long-tailed big-footed mice Macrotarsomys ingens (67.4 g). The mean ± SD BMR of M. ingens was 0.298 ± 0.032 Watts (n = 12), 31.7 % lower than that predicted by a phylogenetically independent allometric equation. Body mass was correlated with BMR. The lower critical limit of thermoneutrality (T lc) was 30.7 °C. The mean ± SD T b = 36.1 ± 0.8 °C (n = 12) compared well with the mean T b values for myomorph rodents from the Afrotropical zone, but was lower than those of the Neotropical and Palearctic zones. M. ingens became pathologically hypothermic when exposed to ambient temperatures lower than 18 °C. The soil temperature at depths of 250 mm and deeper did not decrease below 22 °C throughout the austral winter. The thermoregulatory data for M. ingens did not differ from those that characterize mainland Afrotropical rodents. However, BMR and T b were lower than those of Holarctic rodents. Thus, contrary to expectations of Island Biogeography theory that rapid character displacement often occurs in morphological and behavioural traits when mammals colonize islands, M. ingens displayed climate-related physiological traits indicative of phylogenetic inertia. Presumably the tropical conditions that prevailed on Madagascar at the time of colonisation differed very little from those of the African mainland, and hence there was no strong driving force for change. Unlike small tenrecs and lemurs that radiated on Madagascar prior to the Oligocene, traits associated with an insular existence, such as daily torpor and hibernation, were not evident in M. ingens.  相似文献   

14.
Some mammals indigenous to desert environments, such as camels, cope with high heat load by tolerating an increase in body temperature (T b) during the hot day, and by dissipating excess heat during the cooler night hours, i.e., heterothermy. Because diurnal heat storage mechanisms should be favoured by large body size, we investigated whether this response also exists in Asian elephants when exposed to warm environmental conditions of their natural habitat. We compared daily cycles of intestinal T b of 11 adult Asian elephants living under natural ambient temperatures (T a) in Thailand (mean T a ~ 30°C) and in 6 Asian elephants exposed to cooler conditions (mean T a ~ 21°C) in Germany. Elephants in Thailand had mean daily ranges of T b oscillations (1.15°C) that were significantly larger than in animals kept in Germany (0.51°C). This was due to both increased maximum T b during the day and decreased minimum T b at late night. Elephant’s minimum T b lowered daily as T a increased and hence entered the day with a thermal reserve for additional heat storage, very similar to arid-zone ungulates. We conclude that these responses show all characteristics of heterothermy, and that this thermoregulatory strategy is not restricted to desert mammals, but is also employed by Asian elephants.  相似文献   

15.
Sexual size dimorphism (SSD) is a common phenomenon in animals. In many species females are substantially larger than males. Because body size plays a central role in modulating the body temperature (T b) of ectotherms, intersexual differences in body size may lead to important intersexual differences in thermoregulation. In addition, because SSD is realized by differences in growth rate and because growth rate is strongly temperature dependent in ectotherms, a conflict between male reproductive behaviour and thermoregulation may affect the expression of SSD. In this study, we investigated the thermal implications of SSD in a reptile exhibiting spectacular female-biased SSD: the northern map turtle (Graptemys geographica). Over three seasons, we collected >150,000 measurements of T b in free-ranging adult and juvenile northern map turtles using surgically implanted miniature temperature loggers. Northern map turtles exhibited seasonal patterns of thermoregulation typical of reptiles in northern latitudes, but we found that large adult females experienced a lower daily maximum T b and a narrower daily range of T b than adult males and small juvenile females. In addition, despite more time spent basking, large adult females were not able to thermoregulate as accurately as small turtles. Our findings strongly suggest that body size limits the ability to thermoregulate accurately in large females. By comparing thermoregulatory patterns between adult males and juvenile females of similar body size, we found no evidence that male reproductive behaviours are an impediment to thermoregulation. We also quantified the thermal significance of basking behaviour. We found, contrary to previous findings, that aerial basking allows northern map turtles to raise their T b substantially above water temperature, indicating that basking behaviour likely plays an important role in thermoregulation.  相似文献   

16.
The capacity for an ectothermic reptile to thermoregulate has implications for many components of its life history. Over two years, we studied thermoregulation in a population of Midland painted turtles (Chrysemys picta marginata) in a shallow, thermally variable wetland during summer in Northern Michigan. Mean body temperature (Tb) of free-ranging turtles was greater in 2008 (25.8 °C) than in 2010 (19.7 °C). Laboratory determined thermoregulatory set point (Tset) ranged from 25 °C (Tset-min) to 31 °C (Tset-max) and was lower during the fall (17–26 °C). Deviations of Tb distributions from field measured operative temperatures (Te) and indices of thermoregulation indicated that C. picta marginata were capable of a limited degree of thermoregulation. Operative temperatures and thermal quality (de=|Tset-minTe| and |TeTset-max|) cycled daily with maximal thermal quality occurring during late morning and late afternoon. The accuracy of thermoregulation (db=|Tset-minTb| and |TbTset-max|) was maximal (db values were minimal) as Tb declined and traversed Tset during the late afternoon–early evening hours and was higher on cloudy days than on sunny days because relatively low Te values decreased the number of Tb values that were above Tset. Our index of thermal exploitation (Ex=frequency of Tb observations within Tset) was 36%, slightly lower than that reported for an Ontario population of C. picta marginata. Regression of db (thermal accuracy) on de (thermal quality) indicated that turtles invested more in thermoregulation when thermal quality was low and when water levels were high than when they were low. There were no intersexual differences in mean Tb throughout the year but females had relatively high laboratory determined Tb values in the fall, perhaps reflecting the importance of maintaining ovarian development prior to winter.  相似文献   

17.
Historically, studies of reptilian thermal biology have compared ambient temperatures (Ta) to body temperatures (Tb) from the animal under study, with Tb usually taken from the cloaca and various instruments being used to measure Tb. The advent of surgically implanted miniature temperature loggers has offered the opportunity to test the efficacy of cloacal Tb as a measurement in thermoregulatory studies. We expected that there was a difference between skin, cloacal, and core Tb's. Temperatures were measured from various positions on leopard tortoises (Stigmochelys pardalis) using thermocouples and miniature temperature loggers, including surgically implanted temperature loggers. Measurements of temperature from various positions on and in the tortoise were significantly different from Ta. Cloacal Tb's were significantly lower than all other body temperatures measured, and core Tb's were significantly different from cloacal Tb, skin and carapace temperatures. In addition, significant differences were found between measures of temperature from other parts of the body. The variations between core Tb, cloacal Tb and other measures of Tb indicated that there are large thermal gradients within the body of a relatively large tortoise at any given time with cloacal Tb not an accurate measure of core Tb.  相似文献   

18.
The thermoregulatory capacity of a species can determine which climatic niche it occupies. Its development in avian chicks is influenced by numerous factors. Furthermore, it is suggested that altricial chicks develop their thermoregulatory capacity post-hatching, while precocial chicks develop aspects of this in the egg. We investigated the development of thermoregulation of four co-occurring seabird species in the Seychelles; namely white, ground-nesting white-tailed tropicbirds (Phaethon lepturus) and tree-nesting fairy terns (Gygis alba); and dark plumaged, tree-nesting lesser noddies (Anous tenuirostris) and ground- and tree-nesting brown noddies (A. stolidus). White-tailed tropicbirds have semi-altricial chicks, while the remaining species have semi-precocial chicks. Cloacal temperatures (Tb) were measured at five day intervals from newly hatched chicks and compared over time, and with adult Tbs. Initial Tbs of all chicks, except fairy terns, were lower than those taken when chicks were older. Brooding cessation generally coincided with feather development, as did an increase in Tb. Mean chick Tb was significantly lower than mean adult Tb for all species, but only white-tailed tropicbird and brown noddy chicks in tree nests differed significantly from mean adult Tb when chick Tb at five day intervals were considered. There was a significant interactive effect of nest site and age on brown noddy chick Tb, but chick colour did not have a significant effect on Tb. However, brown noddy chicks on dune crests maintained a constant Tb sooner than chicks in tree nests. Our results demonstrate that tropical seabird species have a more delayed onset of thermoregulatory capabilities when compared with those in temperate environments, perhaps as nest sites are less thermally challenging. Nest microhabitats and behavioural thermoregulation, are likely more important during early chick development for these species.  相似文献   

19.
Despite being ectotherms, reptiles have an ability to thermoregulate which is enhanced by adopting a variety of behavioural mechanisms. Different behavioural postures, the use of retreat sites and selection of microhabitats enable reptiles to maintain their core body temperatures (Tb) above that of ambient temperatures (Ta) in winter or below Ta maximum in summer. This study describes the daily activity patterns of leopard tortoises (Stigmochelys pardalis) in relation to Tb and Ta, and the extent to which leopard tortoises can manipulate their Tb in response to seasonal changes in Ta. Ten and nine leopard tortoises were radio-tracked in 2002 and 2003, respectively and cloacal Tb and behaviours observed. Core Tbs were measured using Thermocron iButtons surgically implanted into the body cavities of 4 and 5 adult telemetered tortoises for summer and winter 2003, respectively. There were seasonal differences in the extent to which certain behaviours were practiced and the time of day that these occurred. Leopard tortoises generally had unimodal activity patterns in winter and bimodal ones in summer. In winter tortoises were active at lower Tbs, and at lower Ta, than in summer. Tortoises maintained their core Tb well below Ta minimum profiles in summer and well above these in winter. Core Tb closely followed the increase in Ta minimum profiles in the mornings, however tortoises exhibited an extended thermal lag when Ta minimum profiles cooled overnight. By using different behavioural mechanisms in summer and winter, leopard tortoises maintained their core Tb at different levels compared with Ta minimum and maximum profiles. Consequently although they are ectotherms, they maintained their core Tb independent of Ta.  相似文献   

20.
How will climate change affect species'' reproduction and subsequent survival? In many egg-laying reptiles, the sex of offspring is determined by the temperature experienced during a critical period of embryonic development (temperature-dependent sex determination, TSD). Increasing air temperatures are likely to skew offspring sex ratios in the absence of evolutionary or plastic adaptation, hence we urgently require means for predicting the future distributions of species with TSD. Here we develop a mechanistic model that demonstrates how climate, soil and topography interact with physiology and nesting behaviour to determine sex ratios of tuatara, cold-climate reptiles from New Zealand with an unusual developmental biology. Under extreme regional climate change, all-male clutches would hatch at 100% of current nest sites of the rarest species, Sphenodon guntheri, by the mid-2080s. We show that tuatara could behaviourally compensate for the male-biasing effects of warmer air temperatures by nesting later in the season or selecting shaded nest sites. Later nesting is, however, an unlikely response to global warming, as many oviparous species are nesting earlier as the climate warms. Our approach allows the assessment of the thermal suitability of current reserves and future translocation sites for tuatara, and can be readily modified to predict climatic impacts on any species with TSD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号