首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A thiazole derivative, 2-(2,6-dichlorobenzyl)-N-(4-isopropylphenyl) thiazole-4-carboxamide (1), was identified as a TRPV1 antagonist. We synthesized various thiazole analogs and evaluated them for their ability to block capsaicin- or acid-induced calcium influx in TRPV1-expressing CHO cells. The IC(50) values of the most potent antagonists were ca. 0.050microM in these assays.  相似文献   

2.
A series of spiro-piperidine azetidinone were synthesized and evaluated as potential TRPV1 antagonists. An important issue of plasma stability was investigated and resolved. Further focused SAR study lead to the discovery of a potent antagonist with good oral pharmacokinetic profile in rat.  相似文献   

3.
From hit compounds identified by high throughput screening (HTS), we have found compound 1 as a lead TRPV1 antagonist and confirmed its potential as a treatment for pain. Compound 1 has led to potent TRPV1 antagonistic benzamide derivatives ((+/-)-2: human IC(50)=23 nM, (+/-)-3: human IC(50)=14 nM in the capsaicin-induced calcium influx assay) containing indole and naphthyl moieties, obtained by elaboration of the tryptamine scaffold or via bioisosteric replacements.  相似文献   

4.
Novel chroman and tetrahydroquinoline ureas were synthesized and evaluated for their activity as TRPV1 antagonists. It was found that aryl substituents on the 7- or 8-position of both bicyclic scaffolds imparted the best in vitro potency at TRPV1. The most potent chroman ureas were assessed in chronic and acute pain models, and compounds with the ability to cross the blood-brain barrier were shown to be highly efficacious. The tetrahydroquinoline ureas were found to be potent CYP3A4 inhibitors, but replacement of bulky substituents at the nitrogen atom of the tetrahydroisoquinoline moiety with small groups such as methyl can minimize the inhibition.  相似文献   

5.
Benzothiazole amides were identified as TRPV1 antagonists from high throughput screening using recombinant human TRPV1 receptor and structure-activity relationships were explored to pinpoint key pharmacophore interactions. By increasing aqueous solubility, through the attachment of polar groups to the benzothiazole core, and enhancing metabolic stability, by blocking metabolic sites, the drug-like properties and pharmokinetic profiles of benzothiazole compounds were sufficiently optimized such that their therapeutic potential could be verified in rat pharmacological models of pain.  相似文献   

6.
Clinical candidate AMG 517 (1) is a potent antagonist toward multiple modes of activation of TRPV1; however, it suffers from poor solubility. Analogs with various substituents at the R region of 3 were prepared to improve the solubility while maintaining the potent TRPV1 activity of 1. Compounds were identified that maintained potency, had good pharmacokinetic properties, and improved solubility relative to 1.  相似文献   

7.
A series of indane-type acetamide and propanamide analogues were investigated as TRPV1 antagonists. The analysis of structure–activity relationship indicated that indane A-region analogues exhibited better antagonism than did the corresponding 2,3-dihydrobenzofuran and 1,3-benzodioxole surrogates. Among them, antagonist 36 exhibited potent and selective antagonism toward capsaicin for hTRPV1 and mTRPV1. Further, in vivo studies indicated that antagonist 36 showed excellent analgesic activity in both phases of the formalin mouse pain model and inhibited the pain behavior completely at a dose of 1 mg/kg in the 2nd phase.  相似文献   

8.
We report on a series of alpha-substituted-beta-tetralin-derived and related phenethyl-based isoquinolinyl and hydroxynaphthyl ureas as potent antagonists of the human TRPV1 receptor. The synthesis and Structure-activity relationships (SAR) of the series are described.  相似文献   

9.
We have developed a new class of diarylalkyl amides as novel TRPV1 antagonists. They exhibited potent 45Ca2+ uptake inhibitions in rat DRG neuron. In particular, the amide 59 was identified as a potent antagonist with IC50 of 57 nM. The synthesis and structure–activity relationship of the diarylalkyl amides are also described.  相似文献   

10.
The structure-activity relationships of xanthene carboxamide derivatives on the CCR1 receptor binding affinity and the functional antagonist activity were described. Previously, we reported a quaternarized xanthen-9-carboxamide 1 as a potent human CCR1 receptor antagonist that was derived from a xanthen-9-carboxamide lead 2a. Further derivatization of 2a focusing on installing an additional substituent into the xanthene ring resulted in the identification of 2b-1 with IC(50) values of 1.8nM and 13nM in the binding assay using human CCR1 receptors transfected CHO cells and in the functional assay using U937 cells expressing human CCR1 receptors, respectively.  相似文献   

11.
6-Phenylnicotinamide (2) was previously identified as a potent TRPV1 antagonist with activity in an in vivo model of inflammatory pain. Optimization of this lead through modification of both the biaryl and heteroaryl components has resulted in the discovery of 6-(4-fluorophenyl)-2-methyl-N-(2-methylbenzothiazol-5-yl)nicotinamide (32; SB-782443) which possesses an excellent overall profile and has been progressed into pre-clinical development.  相似文献   

12.
Optimisation of urea (5), identified from high throughput screening and subsequent array chemistry, has resulted in the identification of pyridine carboxamide (33) which is a potent motilin receptor agonist possessing favourable physicochemical and ADME profiles. Compound (33) has demonstrated prokinetic-like activity both in vitro and in vivo in the rabbit and therefore represents a promising novel small molecule motilin receptor agonist for further evaluation as a gastroprokinetic agent.  相似文献   

13.
We describe the generation of novel EP(1) receptor antagonists by investigation of thiophene isosteres. In addition, we disclose preliminary in vitro and in vivo DMPK for selected compounds.  相似文献   

14.
Optimization of a water soluble, moderately potent lead series of isoxazole-3-carboxamides was conducted, affording a compound with the requisite balance of potency, solubility and physicochemical properties for in vivo use. Compound 8e was demonstrated to be efficacious in a rat model of inflammatory pain, following oral administration.  相似文献   

15.
A series of piperidine carboxamides were developed as potent antagonists of the transient receptor potential vanilloid-1 (TRPV1), an emerging target for the treatment of pain. A focused library of polar head groups led to the identification of a benzoxazinone amide that afforded good potency in cell-based assays. Synthesis and a QSAR model will be presented.  相似文献   

16.
The synthesis and biological evaluation of novel pyrazole and imidazole carboxamides as CB1 antagonists are described. As a part of eastern amide SAR, various chemically diverse motifs were introduced on rimonabant template. The central pyrazole core was also replaced with its conformationally constrained motif and imidazole moieties. In general, a range of modifications were well tolerated. Several molecules with low- and sub-nanomolar potencies were identified as potent CB1 receptor antagonists. The in vivo proof of principle for weight loss is demonstrated with a lead compound in DIO mice model.  相似文献   

17.
A series of 1,2,3,6-tetrahydropyridyl-4-carboxamides, exemplified by 6, have been synthesized and evaluated for in vitro TRPV1 antagonist activity, and in vivo analgesic activity in animal pain models. The tetrahydropyridine 6 is a novel TRPV1 receptor antagonist that potently inhibits receptor-mediated Ca2+ influx in vitro induced by several agonists, including capsaicin, N-arachidonoyldopamine (NADA), and low pH. This compound penetrates the CNS and shows potent anti-nociceptive effects in a broad range of animal pain models upon oral dosing due in part to its ability to antagonize both central and peripheral TRPV1 receptors. The SAR leading to the discovery of 6 is presented in this report.  相似文献   

18.
Small molecule antagonists of the vanilloid receptor 1 (TRPV1, also known as VR1) are disclosed. Ureas such as 5 (SB-452533) were used to explore the structure activity relationship with several potent analogues identified. Pharmacological studies using electrophysiological and FLIPR Ca(2+) based assays showed compound 5 was an antagonist versus capsaicin, noxious heat and acid mediated activation of TRPV1. Study of a quaternary salt of 5 supports a mode of action in which compounds from this series cause inhibition via an extracellularly accessible binding site on the TRPV1 receptor.  相似文献   

19.
Based on a series of diaryl amides the corresponding inverse amides have been found to be potent TRPV1 receptor antagonists. Benzimidazole and indazolone derivatives prepared retained good potency in vitro and indazolone 4a was identified as a novel TRPV1 receptor antagonist suitable for evaluating orally in animal models of analgesia.  相似文献   

20.
A series of 4-(2-pyridyl)piperazine-1-benzimidazole analogues based on compound 1 was synthesized and evaluated for TRPV1 antagonist activity in capsaicin-induced (CAP) and pH5.5-induced (pH) FLIPR assays in a human TRPV1-expressing HEK293 cell line. Potent TRPV1 antagonists were identified through SAR studies. From these studies, several antagonists were found, with IC(50) values ranging from 32 nM to approximately 5000 nM. Among these, 11 [IC(50)=90 nM (CAP) and 104 nM (pH)] was further evaluated and found to be orally available in rats (F%=19.7).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号