首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the fixed film reactor system containing immobilized Phanerochaete chrysosporium cells was employed for decolorization of Red 533 dispersed dye. The inlet dye concentration and the inlet flow rate were shown to affect the decolorization efficiency. Each decolorization process was conducted continuously for 10–20 days or more and the decolorization efficiency remained higher than 80%. The immobilized cultures possessed good biological activities and the biodegrading system also showed capability for a long term operation.  相似文献   

2.
Summary Four white-rot fungi isolated in Pakistan were used for decolorization of widely used reactive textile dyestuffs. Phanerochaete chrysosporium, Coriolus versicolor, Ganoderma lucidum and Pleurotus ostreatus were grown in defined nutrient media for decolorization of Drimarene Orange K-GL, Remazol Brilliant Yellow 3GL, Procion BluePX-5R and Cibacron Blue P-3RGR for 10 days in shake flasks. Samples were removed every day, centrifuged and the absorbances of the supernatants were read to determine percentage decolorization. It was observed that P. chrysosporium and C. versicolor could effectively decolorize Remazol Brilliant Yellow 3GL, Procion BluePX-5R and Cibacron Blue P-3RGR. Drimarene Orange K-GL was completely decolorized (0.2 g/l after 8 days) only by P.chrysosporium, followed by P. ostreatus (0.17 g/l after 10 days). P. ostreatus also showed good decolorization efficiencies (0.19–0.2 g/l) on all dyes except Remazol Brilliant Yellow (0.07 g/l after 10 days). G. lucidum did not decolorize any of the dyestuffs to an appreciable extent except Remazol Brilliant Yellow (0.2 g/l after 8 days).  相似文献   

3.
The little studied white rot fungus Ischnoderma resinosum was tested for its ability to decolorize seven different synthetic dyes. The strain efficiently decolorized Orange G, Amaranth, Remazol Brilliant Blue R, Cu-phthalocyanin and Poly R-478 on agar plates and in liquid culture at a relatively high concentration of 2–4 and 0.5–1 g l−1, respectively. Malachite Green and Crystal Violet were decolorized to a lower extent up to the concentration of 0.1 g l−1. Decolorization capacity of I. resinosum was higher than that in Phanerochaete chrysosporium, Pleurotus ostreatus or Trametes versicolor. In contrast with these thoroughly examined fungi, I. resinosum was able to degrade a wide spectrum of chemically and structurally different synthetic dyes. I. resinosum also efficiently decolorized dye mixtures. In liquid culture, Orange G and Remazol Brilliant Blue R were decolorized most rapidly; the process was not affected by different nitrogen content in the media. Shaken cultivation strongly inhibited the decolorization of Orange G.  相似文献   

4.
The role of lignin peroxidases (LIPs) and manganese peroxidases (MNPs) of Phanerochaete chrysosporium in decolorizing kraft bleach plant effluent (BPE) was investigated. Negligible BPE decolorization was exhibited by a per mutant, which lacks the ability to produce both the LIPs and the MNPs. Also, little decolorization was seen when the wild type was grown in high-nitrogen medium, in which the production of LIPs and MNPs is blocked. A lip mutant of P. chrysosporium, which produces MNPs but not LIPs, showed about 80% of the activity exhibited by the wild type, indicating that the MNPs play an important role in BPE decolorization. When P. chrysosporium was grown in a medium with 100 ppm of Mn(II), high levels of MNPs but no LIPs were produced, and this culture also exhibited high rates of BPE decolorization, lending further support to the idea that MNPs play a key role in BPE decolorization. When P. chrysosporium was grown in a medium with no Mn(II), high levels of LIPs but negligible levels of MNPs were produced and the rate and extent of BPE decolorization by such cultures were quite low, indicating that LIPs play a relatively minor role in BPE decolorization. Furthermore, high rates of BPE decolorization were seen on days 3 and 4 of incubation, when the cultures exhibit high levels of MNP activity but little or no LIP activity. These results indicate that MNPs play a relatively more important role than LIPs in BPE decolorization by P. chrysosporium.  相似文献   

5.
The role of lignin peroxidases (LIPs) and manganese peroxidases (MNPs) of Phanerochaete chrysosporium in decolorizing kraft bleach plant effluent (BPE) was investigated. Negligible BPE decolorization was exhibited by a per mutant, which lacks the ability to produce both the LIPs and the MNPs. Also, little decolorization was seen when the wild type was grown in high-nitrogen medium, in which the production of LIPs and MNPs is blocked. A lip mutant of P. chrysosporium, which produces MNPs but not LIPs, showed about 80% of the activity exhibited by the wild type, indicating that the MNPs play an important role in BPE decolorization. When P. chrysosporium was grown in a medium with 100 ppm of Mn(II), high levels of MNPs but no LIPs were produced, and this culture also exhibited high rates of BPE decolorization, lending further support to the idea that MNPs play a key role in BPE decolorization. When P. chrysosporium was grown in a medium with no Mn(II), high levels of LIPs but negligible levels of MNPs were produced and the rate and extent of BPE decolorization by such cultures were quite low, indicating that LIPs play a relatively minor role in BPE decolorization. Furthermore, high rates of BPE decolorization were seen on days 3 and 4 of incubation, when the cultures exhibit high levels of MNP activity but little or no LIP activity. These results indicate that MNPs play a relatively more important role than LIPs in BPE decolorization by P. chrysosporium.  相似文献   

6.
The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization.  相似文献   

7.
A cell-free preparation from Phanerochaete chrysosporium culture medium decolorized the polymeric dye Poly R-481. The majority of this decolorization activity sedimented when centrifuged at 150,000 X g, indicating that it was associated with a particulate body. The activity was sensitive to heat, azide and cyanide, was stimulated by exogenously added H2O2, and was optimal around pH 4. Electron micrographs of the sedimented culture medium fraction showed the presence of numerous particulate structures. A similar dye decolorization activity from sonicated mycelium also sedimented at 150,000 X g.  相似文献   

8.
Dye decolorization capacity of two white-rot fungi, Irpex lacteus and Phanerochaete chrysosporium, was compared in N-limited liquid cultures. The agitated cultures showed lower ability to decolorize azo dyes Reactive Orange 16 and Naphthol Blue Black than static cultures. Similar effect was also observed with other structurally different synthetic dyes. The effect of surfactants on the decolorization process is discussed. A significant increase in the Reactive Orange 16 decolorization by the agitated I. lacteus cultures was observed after adding 0.1% Tween 80, following a higher Mn-dependent peroxidase production. The in vitro dye decolorization using the purified enzyme proved its decolorization ability.  相似文献   

9.
Selected strains of three species of white rot fungi, Pleurotus ostreatus, Phanerochaete chrysosporium and Trametes versicolor, were grown in sterilized soil from straw inocula. The respective colonization rates and mycelium density values decreased in the above mentioned order. Three- and four-ringed PAHs at 50 ppm inhibited growth of fungi in soil to some extent. The activities of fungal MnP and laccase (units per g dry weight of straw or soil), extracted with 50 mM succinate-lactate buffer (pH 4.5), were 5 to 20-fold higher in straw compared to soil. The enzyme activities per g dry soil in P. ostreatus and T. versicolor were similar, in contrast to P. chrysosporium, where they were extremely low. Compared to the aerated controls, P. ostreatus strains reduced the levels of anthracene, pyrene and phenanthrene by 81–87%, 84–93% and 41–64% within 2 months, respectively. During degradation of anthracene, all P. ostreatus strains accumulated anthraquinone. PAH removal rates in P. chrysosporium and T. versicolor soil cultures were much lower.  相似文献   

10.
Decolorization of recalcitrant dyes by an indigenous strain of white rot fungus isolated from bark of dead tree, WR-1 identified as Ganoderma sp. was investigated. The fermentation medium was optimized using a combination of one factor at a time and orthogonal array method. Maximum decolorization (96%) of 100 ppm amaranth was achieved in 8 h with optimized medium containing 2% starch and 0.125% yeast extract. Rate of dye decolorization by the indigenous isolate Ganoderma sp. WR-1 was very high compared to the most widely used strains of Trametes versicolor and Phanerochaete chrysosporium. The broad-spectrum decolorization efficiency of the isolate was assessed using chemically different dyes. The isolate was further evaluated for the decolorization of industrial effluent. Complete decolorization was achieved in 12 days.  相似文献   

11.
Stereum hirsutum, a white rot fungus, has a good growth in solid state fermentation. This was carried on with wheat bran, soy bran and a mixture of both. Mycelia grown on soy bran showed the highest decolorization activity on Ponceau 2R (xylidine), indigo carmine and malachite green. Optimal relationship between decolorization and detoxification of malachite green was 30 g of fresh weight (mycelia plus substrate) in 500 ml malachite green solution, 42 U/l of laccase was measured in this solution. Decolorization was carried on without the addition either of nutrients or mediators. Conditions for maximal decolorization did not agree with those for maximal ligninolytic enzyme production, but effectiveness of laccase activity on decolorization was evidenced by electrophoretic analysis, that allowed laccase identification and its decolorization activity in gels stained with indigo carmine and malachite green, with ABTS as mediator. Detoxification was assayed using the sensible fungus Phanerochaete chrysosporium.  相似文献   

12.
Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium   总被引:29,自引:0,他引:29  
Biodegradation of Orange II, Tropaeolin O, Congo Red, and Azure B in cultures of the white rot fungus, Phanerochaete chrysosporium, was demonstrated by decolarization of the culture medium, the extent of which was determined by monitoring the decrease in absorbance at or near the wavelength maximum for each dye. Metabolite formation was also monitored. Decolorization of these dyes was most extensive in ligninolytic cultures, but substantial decolorization also occurred in nonligninolytic cultures. Incubation with crude lignin peroxidase resulted in decolorization of Azure B, Orange II, and Tropaeolin O but not Congo Red, indicating that lignin peroxidase is not required in the initial step of Congo Red degradation.  相似文献   

13.
Laccase is a ligninolytic enzyme that is widespread in white-rot fungi. Alginate–chitosan microcapsules prepared by an emulsification–internal gelation technique were used to immobilize laccase. Parameters of the immobilization process were optimized. Under the optimal immobilization conditions (2% sodium alginate, 2% CaCl2, 0.3% chitosan and 1:8 ratio by volume of enzyme to alginate), the loading efficiency and immobilized yield of immobilized laccase were 88.12% and 46.93%, respectively. Laccase stability was increased after immobilization. Both the free and immobilized laccase alone showed a very low decolorization efficiency when Alizarin Red was selected for dye decolorization test. When 0.1 mM 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was added into the decolorization system, the decolorization efficiency increased significantly. Immobilized laccase retained 35.73% activity after three reaction cycles. The result demonstrated that immobilized laccase has potential application in dyestuff treatment.  相似文献   

14.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
C Cripps  J A Bumpus    S D Aust 《Applied microbiology》1990,56(4):1114-1118
Biodegradation of Orange II, Tropaeolin O, Congo Red, and Azure B in cultures of the white rot fungus, Phanerochaete chrysosporium, was demonstrated by decolarization of the culture medium, the extent of which was determined by monitoring the decrease in absorbance at or near the wavelength maximum for each dye. Metabolite formation was also monitored. Decolorization of these dyes was most extensive in ligninolytic cultures, but substantial decolorization also occurred in nonligninolytic cultures. Incubation with crude lignin peroxidase resulted in decolorization of Azure B, Orange II, and Tropaeolin O but not Congo Red, indicating that lignin peroxidase is not required in the initial step of Congo Red degradation.  相似文献   

16.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The potential use of fungal pellets for decolorization of the textile dyeing wastewater was evaluated. The live pellets of the fungus Phanerochaete chrysosporium were found to remove more than 95% of the color of this wastewater within 1 d. The dye-removal capacity was a function of time and was proportional to the agitation rate; the optimum temperature was 30 degrees C. Both live and dead pellets were further examined in a repeated-batch mode for 5 d. The decolorization performance of live pellets remained high and stable for 5 d and they showed twice to thrice higher decolorization capacity than dead pellets.  相似文献   

18.
Manganese peroxidase (MnP) was produced by shallow stationary cultures of Phanerochaete chrysosporium growing on N-limited medium. Decolorization of sulfonphthalein (SP) dyes by MnP was investigated. The MnP activity profile and decolorization of SP dyes was correlated and almost all dyes were decolorized at pH 4.0. The influence of various inhibitors on Bromocresol Purple decolorization suggested an oxidative nature of the MnP-catalyzed decolorization of SP dyes.  相似文献   

19.
Four different aerobic mixed consortia collected from basins of wastewater streams coming out of dying plants of Crescent Textile (CT), Sitara Textile (ST), Chenab Fabrics (CF) and Noor Fatima Textile (NF), Faisalabad, Pakistan were applied for decolorization of Drimarene Orange K-GL, Drimarene Brilliant Red K-4BL, Foron Yellow SE4G and Foron Blue RDGLN for 10 days using the shake flask technique. CT culture showed the best decolorization potential on all dyestuffs followed by ST, NF and CF, respectively. CT could completely decolorize all dyes within 3–5 days. ST cultures showed effective decolorization potential on Foron Yellow SE4G and Drimarene Brilliant Red K-4BL but complete color removal was achieved after 4 and 7 days, respectively. NF culture showed 100% decolorization efficiencies on Foron Yellow SE4G and Foron Blue RDGLN but it took comparatively longer time periods (5–7 days). Where as, the NF culture had decolorized only 40% and 50% of Drimarene orange and red, respectively, after 10 days. CF caused complete decolorization of Foron Blue RDGLN and Drimarene Brilliant Red K-4BL after 4 and 8 days, respectively but it showed poor performance on other two dyes.  相似文献   

20.
There was no direct correlation between the surface hydrophobicity or hydrophilicity of four solid carriers and the amount of immobilized Phanerochaete chrysosporium. The immobilized biomass was 1.5–1.8 times higher and the fungal degradation activity was 5–8 and 3 times greater in terms of decolorization and phenolics reduction, respectively, with porous carriers than with non-porous carriers. Morphology of the carriers was important and governed the amount of immobilized mycelium and specially the fungal biodegradation activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号