首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Electron micrographs of the linear mtDNA from Tetrahymena pyriformis strain GL show linear molecules with a duplex 'eye' of variable size in the middle. This indicates that replication of this DNA starts near the middle of the molecule and proceeds bidirectionally to the ends, as previously shown for the mtDNA of strain ST (Arnberg, A.C., Van Bruggen, E.F.J., Clegg, R.A., Upholt, W.B. and Borst, P. (1974) Biochim. Biophys. Acta 361, 266-276). The mtDNAs of these two strains have little base sequence homology beyond the ribosomal RNA cistron (Goldbach, R.W., Bollen-De Boer, J.E., Van Bruggen, E.F.J. and Borst, P. (1978) Biochim. Biophys. Acta 521, 187-197). 2. Electron micrographs of mtDNA from strain ST, spread under non-denaturing conditions, contain only molecules with fully duplex ends. mtDNA spread under conditions of early denaturation contains duplex loops on one end (40% of all molecules) or both ends (37%). The loops are stable to partial denaturation and vary in size from 0.15 to approximately 1.0 micron, most loops measuring 0.25--0.40 micron. No loops are formed with single-stranded DNA under analogous conditions and we conclude from this result that loop formation is based on the presence of straight, rather than inverted, duplications near the ends. 3. When full-length 3H-labelled mtDNA from strain ST, 32P-labelled at the 5'-termini with T4 polynucleotide kinase, was sedimented in alkaline sucrose gradients, greater than 70% of the 3H and less than 30% of the 32P cosedimented with full-length molecules; the remaining 32P sedimented heterogeneously and predominantly with the DNA less than 10% the size of intact single strands. Brief incubations of full-length mtDNA with DNA polymerase I from Escherichia coli and labelled dNTPs at 15 degrees C did not lead to preferential labelling of terminal EcoRI fragments of the DNA. From these results we infer that the DNA contains nicks or gaps near the termini and that these are not bordered by free 3'-OH groups. 4. A model is presented in which straight sequence repetitions at the termini of Tetrahymena pyriformis mtDNA are involved in the later stages of replication. This model can also account for the pronounced terminal heterogeneity previously observed in this DNA.  相似文献   

2.
1. We have done cross-hybridizations between the mitochondrial ribosomal RNAs and DNAs from strains ST and PP of Tetrahymena pyriformis. DNA . ribosomal RNA hybrid formation can be completely prevented by an excess of the heterologous ribosomal RNA and the heterologous hybrids melt 6 degrees C below the homologous hybrids. This shows that the ribosomal RNA cistrons can account for the 5% cross-hybridization previously observed between the mtDNAs of strains PP and ST (Goldbach et al. (1977) Biochim. Biophys. Acta 477, 37--50). 2. By electron microscopy of DNA . ribosomal RNA hybrids we have determined the position of the ribosomal RNA cistrons on the mtDNA of strain GL, a mtDNA which we have shown to contain a sub-terminal 1 micron duplication-inversion and a terminal palindrome at one end which varies in length from 0 to 5 micron and which includes the 1 micron duplication-inversion (Arnberg et al. (1977) Biochim. Biophys. Acta 477, 51--69). The 21 S ribosomal RNA cistron overlaps the 1 micron duplication-inversion and as a result two or three cistrons are present, depending on the size of the terminal palindrome. Only one 14 S ribosomal RNA cistron is found, located about 10 000 base pairs away from the nearest 21 S cistron is found, located about 10 000 base pairs away from the nearest 21 S cistron and with the same polarity as this cistron. 3. We conclude from these results and those in the preceding paper that the sequence of the ribosomal RNAs and the position of the ribosomal RNA genes in the mtDNA is strongly conserved in Tetrahymena. Possible reasons for the duplication of 21-S ribosomal RNA genes and the terminal heterogeneity of Tetrahymena mtDNA are discussed.  相似文献   

3.
The structure of replicating adenovirus 2 DNA molecules   总被引:40,自引:0,他引:40  
R L Lechner  T J Kelly 《Cell》1977,12(4):1007-1020
Adenovirus 2 (Ad2)-infected KB cells were exposed to a 2.5 min pulse of 3H-thymidine at 19 hr after infection. The labeled DNA molecules were separated from cell DNA and mature Ad2 DNA by sucrose gradient sedimentation and CsCI equilibrium centrifugation under conditions designed to minimize branch migration and hybridization of single strands. Electron microscopy-of fractions containing radioactivity revealed two basic types of putative replicating molecules: Ad2 length duplex DNA molecules with one or more single-stranded branches (type I) and Ad2 length linear DNA molecules with a single-stranded region extending a variable distance from one end (type II). Length measurements, partial denaturation studies and 3′ terminal labeling experiments were consistent with the following model for Ad2 DNA replication. Initiation of DNA synthesis occurs at or near an end of the Ad2 duplex. Following initiation, a daughter strand is synthesized in the 5′ to 3′ direction, displacing the parental strand with the same polarity. This results in the formation of a branched replicating molecule (type I). Initiations at the right and left molecular ends are approximately equal in frequency, and multiple initiations on the same replicating molecule are common. At any given displacement fork in a type I molecule, only one of the two parental strands is replicated. Two nonexclusive mechanisms are proposed to account for the replication of the other parental strand. In some cases, before completion of a round of displacement synthesis initiated at one end of the Ad2 duplex, a second initiation will occur at the opposite end. In these doubly initiated molecules, both parental strands serve as templates for displacement synthesis. Two type II molecules are generated when the oppositely moving displacement forks meet. Alternatively, displacement synthesis may proceed to the end of the Ad2 duplex, resulting in the formation of a daughter duplex and a parental single strand. Replication of the displaced parental strand is then initiated at or near its 3′ terminus, producing a type II molecule. Daughter strand synthesis proceeds in the 5′ to 3′ direction in type II molecules generated by either mechanism, and completion of synthesis results in the formation of a daughter duplex.  相似文献   

4.
The ability of single-stranded DNA oligomers to form adjacent triplex and duplex domains with two DNA structural motifs was examined. Helix-coil transition curves and a gel mobility shift assay were used to characterize the interaction of single-stranded oligomers 12-20 nt in length with a DNA hairpin and with a DNA duplex that has a dangling end. The 12 nt on the 5'-ends of the oligomers could form a triplex structure with the 12 bp stem of the hairpin or the duplex portion of the DNA with a dangling end. The 3'-ends of the 17-20 nt strands could form Watson-Crick pairs to the five base loop of the hairpin or the dangling end of the duplex. Complexes of the hairpin DNA with the single-stranded oligomers showed two step transitions consistent with unwinding of the triplex strand followed by hairpin denaturation. Melting curve and gel competition results indicated that the complex of the hairpin and the 12 nt oligomer was more stable than the complexes involving the extended single strands. In contrast, results indicated that the extended single-stranded oligomers formed Watson-Crick base pairs with the dangling end of the duplex DNA and enhanced the stability of the adjacent triplex region.  相似文献   

5.
We have analysed the structure of the mtDNAs of six amicronucleate Tetrahymena pyriformis strains, belonging to at least four phenosets, as defined by Borden et al. (Borden, D., Whitt, G.S. and Nanney, D.L. (1973) J. Protozool. 20, 693--700). 2. The mtDNAs of all strains are linear, but they differ in size, in their fragmentation by endonuclease EcoRI and in overall sequence; less than 20% sequence homology was found by DNA-DNA hybridization in all combinations tested, except for the mtDNAs from strains T and ST which are indistinguishable. 3. In spite of these marked sequence differences the mtDNAs of all strains share two structural peculiarities: ragged (gnawed) duplex ends and a duplication-inversion, which varies in length between 0.3 and 1.2 micrometer, depending on the strain. In four strains the duplication-inversion is terminal, allowing formation of single-stranded DNA circles with a duplex tail; in two strains it is subterminal. 4. The ragged ends and sub-terminal position of the duplication-inversion in some of the Tetrahymena mtDNAs do not fit any of the current models for the replication of linear mtDNAs.  相似文献   

6.
1. We have constructed a physical map of the mtDNA of Tetrahymena pyriformis strain ST using the restriction endonucleases EcoRI, PstI, SacI, HindIII and HhaI. 2. Hybridization of mitochondrial 21 S and 14 S ribosomal RNA to restriction fragments of strain ST mtDNA shows that this DNA contains two 21-S and only one 14-S ribosomal RNA genes. By S1 nuclease treatment of briefly renatured single-stranded DNA the terminal duplication-inversion previously detected in this DNA (Arnberg et al. (1975) Biochim. Biophys. Acta 383, 359--369) has been isolated and shown to contain both 21-S ribosomal RNA genes. 14 S ribosomal RNA hybridizes to a region in the central part of the DNA, about 8000 nucleotides or 20% of the total DNA length apart from the nearest 21 S ribosomal RNA gene. 3. We have confirmed this position of the three ribosomal RNA genes by electron microscopical analysis of DNA . RNA hybrid molecules and R-loop molecules. 4. Hybridization of 21 S ribosomal RNA with duplex mtDNA digested either with phage lambda-induced exonuclease or exonuclease III of Escherichia coli, shows that the 21-S ribosomal RNA genes are located on the 5'-ends of each DNA strand. Electron microscopy of denaturated mtDNA hybridized with a mixture of 14-S and 21-S ribosomal RNAs show that the 14 S ribosomal RNA gene has the same polarity as the nearest 21 S ribosomal RNA gene. 5. Tetrahymena mtDNA is (after Saccharomyces mtDNA) the second mtDNA in which the two ribosomal RNA cistrons are far apart and the first mtDNA in which one of the ribosomal RNA cistrons is duplicated.  相似文献   

7.
Several secondary structure features involving the ends of single strands of adenovirus type 2 DNA have been studied by electron microscopy by both the gene 32-ethidium bromide technique and a modification of the standard formamide-cytochrome c technique. A duplex stem of length 115 +/- 10 nucleotide pairs due to pairing between the two members of the inverted terminal repetition is observed in the single-stranded circles that form upon annealing single-stranded linear molecules. This duplex stem is shown to lie at the ends of the DNA by using several reference markers: (i) a newly discovered secondary structure feature (a loop of length ca. 500 nucleotides with a 20-nucleotide pair duplex stem) that maps 73% of the full length from the left end of the molecule and (ii) a duplex region due to a hybridized restriction fragment. There is also some secondary structure within each end of linear single strands. There is some variation in the morphology of the end strucures, and we propose that these involve base pairing, as in a tRNA clover leaf, rather than an exact single hairpin-type inverted repeat. These observations are consistent with the hypothesis that there is a foldback structure at the 3' ends of the DNA that functions as a primer for the initiation of replication.  相似文献   

8.
Preparation and melting of single strand circular DNA loops.   总被引:5,自引:5,他引:0       下载免费PDF全文
A method for preparation of single strand DNA circles of almost arbitrary sequence is described. By ligating two sticky ended hairpins together a linear duplex is formed, closed at both ends by single stranded loops. The melting characteristics of such loops are investigated using optical absorbance and NMR. It is shown by comparison with the corresponding linear sequence (closed circle minus the end loops) that the effects of end fraying and the strand concentration dependence of the melting temperature are eliminated in the circular form. Over the concentration range examined (0.5 to 2.0 micromolar strands), the circular DNA has a monophasic melting curve, while the linear duplex is biphasic, probably due to hairpin formation. Since effects of duplex to single strands dissociation do not contribute to melting of the circular molecules (dumbells), these DNAs present a realistic experimental model for examining local thermal stability in DNA.  相似文献   

9.
Hairpin plasmid--a novel linear DNA of perfect hairpin structure.   总被引:10,自引:1,他引:9       下载免费PDF全文
Y Kikuchi  K Hirai  N Gunge    F Hishinuma 《The EMBO journal》1985,4(7):1881-1886
The terminal structures of deletion derivatives of linear DNA killer plasmid from yeast were analyzed. The yeast Kluyveromyces lactis harbors two unique double-stranded linear DNA killer plasmids, pGKL1 of 8.9 kb and pGKL2 of 13.4 kb. The killer toxin and the resistance to the killer are coded by pGKL1, while pGKL2 is required for the maintenance of pGKL1 in the cell. When the pGKL plasmids from K. lactis were transferred into Saccharomyces cerevisiae by transformation, non-killer transformants harboring pGKL2 and new plasmids, F1 of 7.8 kb and F2 of 3.9 kb, were obtained. F2 was shown to be a linear DNA arising from a 5-kb deletion of the right part of pGKL1. F1 was an inverted dimer of F2. Here we show that F2 has two different terminal structures: one end has a protein attached at the 5' terminus whereas the two strands of duplex are linked together at the other end, thus forming a hairpin structure. This is a novel type of autonomously replicating DNA molecule.  相似文献   

10.
S L Rhode  III 《Journal of virology》1977,21(2):694-712
The linear duplex replicative form (RF) DNA of the parvovirus H-1 has been characterized with respect to cleavage by the bacterial restriction endonuclease of Escherichia coli, EcoRI. RF DNA has a single cleavage site 0.22 genome length from the left end of the molecule. The molecular weight of H-1 RF DNA determined by gel electrophoresis is 3.26 X 10(6). H-1 RF DNA has been found to dimerize by hydrogen-bounded linkage at the molecular left end, and in some molecules the viral strand is covalently linked to the complementary strand. Some 10% of monomeric RF DNA also has a covalent linkage between the viral and complementary strands at the left end. The EcoRI-B fragment, containing the left end of the RF molecule, appears to be a replication terminus by its labeling characteristics for both RF and progeny DNA synthesis. These findings suggest that the left end of H-1 RF DNA has some type of "turn-around" structure and that this end is not an origin for DNA synthesis.  相似文献   

11.
The lambda exonuclease, an enzyme that has been implicated in genetic recombination, rapidly and processively degrades native DNA, starting at the 5' terminus. The enzyme will also degrade the 5'-terminated strand at a single-stranded branch. The experiments reported here reveal various interactions of the enzyme with single-stranded DNA. The rate of digestion is related inversely to the length of single strands. Chains of 100 nucleotides are digested at about 10% the rate of digestion of native DNA. Digestion of the single-stranded ends of lambda DNA does not appear to occur processively. The enzyme binds to circular as well as linear single strands and the affinity for single strands is also related inversely to the chain length. In an equimolar mixture of single- and double-stranded DNA the action of lambda exonuclease on the latteris about half-inhibited. At 20 degrees the initiation of digestion at the 5' terminus of duplex DNA is blocked sterically when such DNA has 3'-terminal single strands that are longer than 100 nucleotides. Information about these properties is important for the practical use of lambda exonuclease as well as for reflections on the role of the enzyme in genetic recombination.  相似文献   

12.
The single-strand-specific nuclease S1 from Aspergillus oryzae rapidly converts superhelical mitochondrial DNA (African Green Monkey cells, Vero ATCC; CCL 81) into nicked circular DNA. These nicked mitochondrial DNA molecules contain two nicks, one in each strand. The phosphodiester backbones are cleaved during this reaction at or near sites that are alkali-labile. In a second slow reaction the circular mitochondrial DNA is converted into a linear duplex DNA. Permutation tests indicate that this linear DNA represents a nonpermutated collection of DNA molecules. These results suggest that two of the alkai-labile sites in the phosphodiester backbones of the mitochondrial chromosome are closely spaced on opposite strands and at specific positions.  相似文献   

13.
Formation of nascent heteroduplex structures by RecA protein and DNA   总被引:13,自引:0,他引:13  
A M Wu  R Kahn  C DasGupta  C M Radding 《Cell》1982,30(1):37-44
E. coli RecA protein promotes homologous pairing in two distinguishable phases: synapsis and strand exchange. With circular single strands (plus strand only) and linear duplex DNA, polarized or unidirectional strand exchange appeared to cause heteroduplex joints to form and grow from a unique end of the duplex DNA. However, a variety of other pairs of substrates appeared to form joint molecules without regard to the polarity of the strands involved. This paradox has been resolved by observations that show that synapsis is fast, nonpolar and sensitive to inhibition by ADP, whereas strand exchange is slow, directional and relatively insensitive to inhibition by ADP. Thus a heteroduplex joint initiated at one end of the duplex DNA grows by continued strand exchange, whereas a joint initiated at the other end dissociates and is unable to start again because accumulating ADP inhibits synapsis. RecA protein appears to form a nascent protein-DNA structure, the RecA synaptic structure, in which at least 100-300 bp in the duplex molecule are held in an unwound configuration and in which the incoming strand is aligned with its complement.  相似文献   

14.
The molecular structure of the single-stranded fd DNA inside its filamentous virion has been stabilized by the photochemical reaction with a psoralen derivative and examined in the electron microscope. The results support the notion that the 6389 nucleotide-long DNA molecule is folded back on itself inside the 1 μm-long protein coat. At one end of the virion, there exists a DNA hairpin region 200±50 base-pairs long. This “end hairpin” is mapped on the fd genome to the site of the replication origin. The most stable in vitro hairpin of fd DNA has been mapped previously to this same site. This unique duplex region of fd DNA may play an important role in the formation of specific protein-DNA complexes which are crucial to stages of the fd life cycle: the adsorption of the phage to the bacteria, the initiation of replication of the single-stranded DNA, and the assembly of newly synthesized DNA strands into the filamentous virions.  相似文献   

15.
Helicase I has been purified to greater than 95% homogeneity from an F+ strain of Escherichia coli, and characterized as a single-stranded DNA-dependent ATPase and a helicase. The duplex DNA unwinding reaction requires a region of ssDNA for enzyme binding and concomitant nucleoside 5'-triphosphate hydrolysis. All eight predominant nucleoside 5'-triphosphates can satisfy this requirement. Unwinding is unidirectional in the 5' to 3' direction. The length of duplex DNA unwound is independent of protein concentration suggesting that the unwinding reaction is highly processive. Kinetic analysis of the unwinding reaction indicates that the enzyme turns over very slowly from one DNA substrate molecule to another. The ATP hydrolysis reaction is continuous when circular partial duplex DNA substrates are used as DNA effectors. When linear partial duplex substrates are used ATP hydrolysis is barely detectable, although the kinetics of the unwinding reaction on linear partial duplex substrates are identical to those observed using a circular partial duplex DNA substrate. This suggests that ATP hydrolysis fuels continuous translocation of helicase I on circular single-stranded DNA while on linear single stranded DNA the enzyme translocates to the end of the DNA molecule where it must slowly dissociate from the substrate molecule and/or slowly associate with a new substrate molecule, thus resulting in a very low rate of ATP hydrolysis.  相似文献   

16.
The RecA protein ofEscherichia coli catalyzes homologous pairing and strand exchange between a wide range of molecules showing nucleotide sequence complementarity, including a linear duplex and a single-stranded DNA molecule. We demonstrate that RecA can promote formation of joint molecules when the duplex contains an RNA/DNA hairpin and a single-stranded circle serves as the pairing partner. A chimeric RNA/DNA hairpin can be used to form stable joint molecules with as little as 15 bases of shared homology as long as the RNA stretch contains complementarity to the circle. The joint molecule bears some resemblance to a triple helical structure composed of RNA residues surrounded by two DNA strands which are in a parallel orientation. Evidence is presented that supports the notion that short stretches of RNA can be used in homologous pairing reactions at lengths below that required for DNA-DNA heteroduplex formation.  相似文献   

17.
18.
The vaccinia virus genome is a single, linear, duplex DNA molecule whose complementary strands are naturally cross-linked. The molecular weight has been determined by contour length measurements from electron micrographs to be 122 ± 2.2 × 106. Denaturation mapping techniques indicate that the nucleotide sequence arrangement of the DNA is unique. Two forms of cross-linked vaccinia DNA were observed in alkaline sucrose gradients. The relative S-values of the two cross-linked species were appropriate for a single-stranded circle and a linear single strand, each with a molecular weight twice that expected for an intact, linear, complementary strand of vaccinia DNA. The fraction of sheared vaccinia DNA able to “snap back” after denaturation suggested a minimum of two crosslinks per molecule. Full-length single-stranded circles were observed in the electron microscope after denaturation of vaccinia DNA. Partial denaturation produced single-stranded loops at the ends of all full-length molecules. Exposure of native vaccinia DNA to a single strand-specific endonuclease isolated from vaccinia virions caused disruption of the cross-links, as assayed by alkaline sedimentation, and produced free single-strand ends when partially denatured DNA was observed in the electron microscope. We conclude that vaccinia DNA contains two cross-links, one at or near (within 50 nucleotides) each end in a region of single-stranded DNA. Two models for the cross-links are presented.  相似文献   

19.
20.
Homologous pairing of DNA molecules promoted by a protein from Ustilago   总被引:26,自引:0,他引:26  
E Kmiec  W K Holloman 《Cell》1982,29(2):367-374
A protein from mitotic cells of Ustilago maydis was purified on the basis of its ability to reanneal complementary single strands of DNA. The protein catalyzed the uptake of linear single strands by super-helical DNA, but only in reactions with homologous combinations of single-strand fragments and super-helical DNA from phages phi X174 and fd. No reaction occurred with heterologous combinations. The protein also efficiently paired circular single strands and linear duplex DNA molecules. The product was a joint molecule in which the circular single strand displaced one strand of the duplex. Efficient pairing depended upon ATP, and ATPase activity was found associated with the purified protein. ATP-dependent reannealing of complementary single strands was not detectable in the rec1 mutant of Ustilago, which is deranged in meiotic recombination, as complete tetrads are rare, and is defective in radiation-induced mitotic gene conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号