首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. [4-(14)C]Cortisone was administered to anaesthetized male cats as a single injection or as a 45-60min. infusion. 2. After the single dose a total of 69.6-89.6% of the radioactivity was excreted in bile, and 0.5-7.1% in urine. After infusion total recovery in bile was 73.4-92.1%, and 1.2-1.7% in urine. 3. When bile and urine samples were hydrolysed successively by beta-glucuronidase, cold acid and hot acid, most of the radioactivity was converted into substances not extractable from neutral aqueous solution by ethyl acetate-ether. 4. In bile, metabolites hydrolysable by beta-glucuronidase were found in only small proportions (3-4%) of the dose.  相似文献   

2.
1. [4-(14)C]Progesterone was administered intravenously to anaesthetized male and female New Zealand White rabbits as a single injection or as a 45-60min. infusion. 2. After a single dose about 60% of the radioactivity was recovered in 6hr., and twice as much radioactivity was present in bile as in urine. After infusion total recovery of radioactivity was only about 40% in 6hr., but the relative proportions of metabolites in bile and urine were about the same as after a single dose. 3. Bile and urine samples were hydrolysed successively by beta-glucuronidase, cold acid and hot acid. 4. In bile the major proportion of metabolites appeared in the glucuronide fraction; in urine beta-glucuronidase hydrolysis yielded the greatest amounts of ether-extractable radioactivity, but the greatest proportion of radioactivity could not be extracted by ether from an alkaline solution of the hydrolysed urine. 5. There was no apparent difference in the quantity or distribution of metabolites excreted by male and female animals.  相似文献   

3.
1. [4-(14)C]Testosterone was administered to anaesthetized male and female New Zealand White rabbits as a single injection or as a 45-60min. infusion. 2. After a single dose a total of approx. 56-80% of the radioactivity was excreted in bile and urine. After infusion total recovery of radioactivity was approx. 63-75%. 3. The mean ratio of metabolites in urine to those in bile was 0.77+/-0.41 (range 0.3-1.5). 4. Bile and urine samples were hydrolysed successively by beta-glucuronidase, cold acid and hot acid. In both bile and urine neutral metabolites extracted by ethyl acetate-ether were found mainly after beta-glucuronidase hydrolysis, but a considerable proportion of the dose was converted into substances not extractable from alkaline aqueous solution after all forms of hydrolysis used.  相似文献   

4.
Metabolism of sodium oestrone [35S]sulphate in the guinea pig   总被引:1,自引:1,他引:0       下载免费PDF全文
Intraperitoneal administration of sodium oestrone [(35)S]sulphate to male and female free-ranging guinea pigs is followed by excretion of most of the radioactivity mainly as inorganic [(35)S]sulphate in the urine within 72h. The remainder of the radioactivity in the urine was found in oestrone [(35)S]sulphate, two unidentified metabolites (A and B) and traces of oestradiol-17beta 3-[(35)S]sulphate. When injected intraperitoneally into animals with bile-duct and bladder cannulae, most of the dose was excreted in the bile. Unchanged oestrone [(35)S]sulphate was the main biliary component excreted in males and females, but the latter also excreted appreciable amounts of oestradiol-17beta 3-[(35)S]sulphate and metabolites A and B. The urine from these animals also contained these metabolites, inorganic [(35)S]sulphate and also oestrone [(35)S]sulphate, but in small amounts. Metabolite A was present only in samples from males. Whole body radioautography pinpointed the liver and kidney as the possible sites of metabolism of the ester. The ester underwent little desulphation in the isolated perfused female guinea-pig liver and in animals in which kidney function had been eliminated, and was excreted unchanged in the bile. These results and the observed low oestrogen sulphatase and arylsulphatase C activities found in guinea-pig liver and kidney support the view that the two enzymes are identical.  相似文献   

5.
1. [4-(14)C]Testosterone was administered intravenously to anaesthetized male cats as a single injection or as a 45-60min. infusion. 2. Most of the administered radioactivity was excreted in the bile (70-80%); only 2.9-5.5% of the dose was excreted in the urine. 3. Bile and urine samples were hydrolysed successively to yield glucuronide, ;cold-acid-hydrolysed' and ;hot-acid-hydrolysed' fractions. 4. The proportion of glucuronides in bile decreased in successive samples, but cold-and hot-acid-hydrolysed metabolites showed no consistent change. 5. After hydrolysis most of the radioactivity in both bile and urine could not be extracted by ether from neutral aqueous solution.  相似文献   

6.
1. The fate of (+)-[U-(14)C]catechin and (+)-[ring A-(14)C]catechin has been studied in the guinea pig and rat. 2. (+)-[U-(14)C]Catechin was shown to give rise to labelled phenolic acids, labelled phenyl-gamma-valerolactones and (14)CO(2). 3. (+)-[ring A-(14)C]-Catechin did not give rise to labelled phenolic acids, but labelled phenyl-gamma-valerolactones were detected together with a higher proportion of (14)CO(2). 4. Administered [(14)C]delta-(3-hydroxyphenyl)-gamma-valerolactone gave rise to labelled m-hydroxyphenylpropionic acid in the rat whereas administered [(14)C]m-hydroxyphenylpropionic acid gave rise to a compound yielding labelled m-hydroxybenzoic acid on hydrolysis. 5. The distribution of radioactivity in the urine and faeces of (+)-[(14)C]catechin-fed animals is described; a high proportion of residual radioactivity was found in urine that had been exhaustively extracted with diethyl ether.  相似文献   

7.
Excretion of cholate glucuronide   总被引:1,自引:0,他引:1  
[3-3H]Cholic acid glucuronide [7 alpha,12 alpha-dihydroxy-3 alpha-O-(beta-D-glucopyranosyluronate)-5 beta- cholan-24-oate] was synthesized and administered to rats prepared with either an external biliary fistula or a ligated bile duct. When bile fistula animals were given either microgram or milligram amounts of the glucuronide, biliary secretion of label was rapid and efficient: greater than 90% of the administered label was secreted within 60 min and total recovery of label in bile was 98.6 +/- 1.2%. Studies in which [14C]taurocholate was included in the dose indicated that this bile acid was secreted into bile significantly more rapidly than was the glucuronide. In animals with ligated bile ducts, urinary excretion was the major route of elimination: after 20 hr, 83.4 +/- 9.3% of the administered dose had been excreted in urine. Urinary excretion of cholate glucuronide was significantly more rapid than that of taurocholate. Gas-liquid chromatographic analysis of the methyl ester acetate derivatives of labeled compounds isolated from bile and urine by chromatography established that the bulk (greater than 70%) of the administered material was secreted in bile or excreted in urine as the intact cholate glucuronide. From these results, we conclude that the glucuronidation of cholic acid produces a derivative which is rapidly and effectively cleared from the circulation and excreted.  相似文献   

8.
Metabolism of [6]-gingerol in rats   总被引:3,自引:0,他引:3  
Nakazawa T  Ohsawa K 《Life sciences》2002,70(18):2165-2175
The metabolic fate of [6]-gingerol, one of the active constituents of Zingiber officinale Roscoe, was investigated using rats. The bile of rats orally administered [6]-gingerol was shown to contain a major metabolite (1) by HPLC analysis. Although the metabolites derived from [6]-gingerol were not detected in the urine, the ethyl acetate extract of the urine after enzymatic hydrolysis was shown to contain six minor metabolites (2-7). Their structures were determined to be (S)-[6]-gingerol-4'-O-beta-glucuronide (1), vanillic acid (2), ferulic acid (3), (S)-(+)-4-hydroxy-6-oxo-8-(4-hydroxy-3-methoxyphenyl) octanoic acid (4), 4-(4-hydroxy-3-methoxyphenyl)butanoic acid (5), 9-hydroxy [6]-gingerol (6) and (S)-(+)-[6]-gingerol (7) based on spectroscopic and chemical data. The total cumulative amount of 1 excreted in the bile and 2-7 in the urine during 60 h after the oral administration of [6]-gingerol were approximately 48% and 16% of the dose, respectively. The excretion of 2-7 in the urine decreased after gut sterilization. On the other hand, the incubations of [6]-gingerol with rat liver showed the presence of 9-hydroxy [6]-gingerol, gingerdiol (8), and (S)-[6]-gingerol-4'-O-beta-glucuronide (1). These findings suggest that the gut flora and enzymes in the liver play an important part in the metabolism of [6]-gingerol.  相似文献   

9.
1. [4-(14)C]Cortisone was administered to anaesthetized male and female New Zealand White rabbits as a single injection or as a 45-60min infusion. 2. The method of administration of the steroid did not significantly affect the total excretion of radioactivity in bile and urine [83.8+/-10.8%(s.d.)]. 3. The mean ratio of metabolites in urine to those in bile was 0.97+/-0.23% (range 0.64-1.3). 4. When bile and urine samples were hydrolysed successively by beta-glucuronidase, cold acid and hot acid, neutral metabolites extracted by ethyl acetate-ether were found mainly after hydrolysis by beta-glucuronidase. 5. An approximately equal proportion of the dose was converted into substances not extractable from alkaline aqueous solution after hydrolysis.  相似文献   

10.
The metabolism of 5 alpha-cholest-8(14)-en-3 beta-ol-15-one has been studied after intravenous administration to bile duct-cannulated rats. Very rapid and substantial conversion of the 15-ketosterol to polar biliary metabolites was observed in both male and female rats. For example, upon intravenous injection of [4-14C]5 alpha-cholest-8(14)-en-3 beta-ol-15-one to male bile duct-cannulated rats, approximately 86% of the administered 14C was recovered in bile in the first 38 h. Of the total amount of 14C recovered in bile in 38 h, approximately 50% was excreted in bile in the first 70 min and approximately 90% was excreted within 8 h after the injection of the 15-ketosterol. A substantial fraction of the polar biliary metabolites was shown to undergo enterohepatic circulation. Of the radioactivity derived from the labeled 15-ketosterol which was not recovered in bile or other excreta at 48 h after the intravenous administration of the 15-ketosterol, most (approximately 79%) was recovered in the form of cholesterol and cholesteryl esters of blood and the various tissues. The very substantial and rapid biliary excretion of polar metabolites of the 15-ketosterol (or of cholesterol derived from the 15-ketosterol), coupled with inhibition of the intestinal absorption of cholesterol by the 15-ketosterol, may contribute to the overall hypocholesterolemic action of the 15-ketosterol which has been observed in rodents and in nonhuman primates by providing a metabolic pathway(s) wherein a substantial fraction of the absorbed 15-ketosterol is rapidly removed from the body by biliary excretion in the form of polar metabolites.  相似文献   

11.
Biliary excretion and biotransformation of tracer doses of [14C]lithocholic acid and its sulfate and glucuronide intravenously injected into bile-drainaged rats were compared. Biliary excretion efficiency was in the order of unconjugate sulfate glucuronide and all conjugates were completely excreted into bile within 60 min after injection. Only tracer doses of radioactivity were found in the liver and urine. About 90% of radiolabeled bile acids in bile were conjugated with taurine immediately after injection of lithocholic acid, whereas lithocholic acid-glucuronide was only partly conjugated with taurine all the time (less than 6%) and excreted into bile mainly as native compound. In the first 10 min, 66% of lithocholic acid-sulfate was conjugated with taurine and it gradually proceeded up to 87%. Hydroxylation at C-6 and C-7 positions of lithocholic acid proceeded time-dependently up to 45%. No hydroxylation was observed with lithocholic acid-sulfate or glucuronide. Differences of biliary excretion rate of these conjugates may be one of the reasons for the delayed decrease of sulfated and glucuronidated bile acids in serum after bile drainage to patients with obstructive jaundice of during the recovery of acute hepatitis than non-esterified bile acids.  相似文献   

12.
R A Davis  P Showalter  F Kern 《Steroids》1975,26(4):408-421
The relationship between 14CO2 evolution from the catabolism of [26 or 2714C] cholesterol to bile acids was studied in rats with biliary fistulae. When equal quantities of [26 or 2714C] cholesterol and [414C] cholesterol were administered, there was a significant linear relationship between 14CO2 expiration in the breath and [414C] bile acid excreted in the bile. Bile acid synthesis calculated as the ratio of 14CO2: molar specific activity of biliary cholesterol correlated highly with biliary bile acid excretion in the bile acid depleted rat. Phenobarbital, a known inducer of gamma-amino levulenic acid formation from succinyl CoA did not alter the relationship between the 14CO2 estimation of bile acid synthesis and biliary bile acid excretion, indicating that the relationship between [26 or 2714C] cholesterol side chain cleavage and 14CO2 formation was not altered. Phenobarbital, however, did cause a reduction in bile acid synthesis measured by 14CO2 evolution and by biliary bile acid excretion. The 14CO2 method underestimated bile acid excretion. 8.7% in untreated and phenobarbital treated rats respectively. Since 11% of the radioactivity which was expired as 14CO2 was isolated as bile acids, radioactivity cleaved as [1 or 314C] propionyl CoA may enter cholesterol-bile acid biosynthesis resulting in the underestimation of bile acid synthesis. To test whether radioactivity from propionyl CoA enters steroid biosynthesis [114C] propionate and [214C] propionate were given to untreated biliary fistula rats and the biliary lipids excreted in 60 hours were analyzed. Incorporation of radioactivity into cholesterol and bile acids was greater after the administration of [214C] propionate than after [114C] propionate than after [114C] propionate, suggesting that radioactivity from propionyl CoA may enter steroid biosynthesis by metabolic events in which the methylene and carboxyl carbon atoms are differentiated. Although the use of 14CO2 expiration from [26 or 2714C] cholesterol catabolism underestimates the rate of bile acid synthesis, it should have many applications because of the constant relationship between 14CO2 formation and cholesterol side chain cleavage.  相似文献   

13.
Metabolism of cysteinyl leukotrienes in monkey and man   总被引:1,自引:0,他引:1  
The proinflammatory cysteinyl leukotrienes are inactivated in primates by (a) intravascular degradation, (b) hepatic and renal uptake from the blood circulation, (c) intracellular metabolism of leukotriene E4 (LTE4), and (d) biliary and renal excretion of LTC4 degradation products. We have analyzed cysteinyl leukotriene metabolites excreted into bile and urine of the monkey Macaca fascicularis and of man. In both species, hepatobiliary leukotriene elimination predominated over renal excretion. In a representative healthy human subject at least 25% of the administered radioactivity were recovered from bile and 20% from urine within 24 h. In monkey and man intravenous administration of 14,15-3H2-labeled LTC4 resulted in the biliary and urinary excretion of labeled LTE4, omega-hydroxy-LTE4, omega-carboxy-LTE4, omega-carboxy-dinor-LTE4, and omega-carboxy-tetranor-dihydro-LTE4. Small amounts of N-acetyl-LTE4 were detected in human urine only. Oxidative metabolism of LTE4 proceeded more rapidly in the monkey resulting in the formation of higher relative amounts of omega-oxidized leukotrienes in this species as compared to man. [3H]H2O amounted to less than 2% of the administered dose in monkey and human bile and urine samples. Incubation of isolated human hepatocytes with [3H2]LTC4, [3H2]LTD4, and [3H2]LTE4 showed that only [3H2]LTE4 underwent intracellular oxidative metabolism resulting in the formation of omega- and beta-oxidation products. N-Acetylated LTE4 derivatives were not detected as products formed by human hepatocytes. By a combination of reversed-phase high-performance liquid chromatography and radioimmunoassay, endogenous LTE4 and N-acetyl-LTE4 were detected in human urine in concentrations of 220 +/- 40 and 24 +/- 3 pM, corresponding to 12 +/- 1 and 1.5 +/- 0.2 nmol/mol creatinine, respectively (mean +/- SEM; n = 10). Endogenous LTD4 and LTE4 were detected in human bile (n = 3) in concentrations between 0.2-0.9 nM. Our results demonstrate that LTD4 and LTE4 are major LTC4 metabolites in human bile and/or urine and may serve as index metabolites for the measurement of endogenously generated cysteinyl leukotrienes. Moreover, omega-oxidation and subsequent beta-oxidation from the omega-end contribute to the metabolic degradation of LTE4 not only in monkey but also in man.  相似文献   

14.
1. The excretion in the bile and urine after intravenous injection of 16 organic anions having molecular weights between 355 and 752 was studied in female rats, guinea pigs and rabbits. 2. These compounds were mostly excreted unchanged, except for three of them, which were metabolized to a slight extent (<7% of dose). 3. The rat excreted all the compounds extensively (22-90% of dose) in the bile. 4. In guinea pigs four of the compounds with mol.wt. 355-403 were excreted in the bile to the extent of 7-16% of the dose, four with mol.wt. 407-465 to the extent of 25-44% and eight compounds with mol.wt. 479-752 to the extent of 44-100%. 5. In rabbits four compounds with mol.wt. 355-465 were excreted in the bile to the extent of 1-8% of the dose, two compounds with mol.wt. 479 and 495 to the extent of 24 and 22%, and six compounds with mol.wt. 505-752 to the extent of 31-94%. 6. These results, together with those of other investigations from this laboratory, are discussed and the conclusion is reached that there is a threshold molecular weight for appreciable biliary excretion (i.e. more than 10% of dose) of anions, which varies with species: about 325+/-50 for the rat, 400+/-50 for the guinea pig and 475+/-50 for the rabbit. 7. Anions with molecular weights greater than about 500 are extensively excreted in the bile of all three species. 8. That proportion of the dose of these compounds which is not excreted in the bile is excreted in the urine, and in the three species, bile and urine are complementary excretory pathways, urinary excretion being greatest for the compounds of lowest molecular weight and tending to decrease with increasing molecular weight. 9. Some implications of this interspecies variation in the molecular-weight requirement for extensive biliary excretion are discussed.  相似文献   

15.
Biliary and urinary excretion of peptide leukotrienes in the domestic pig   总被引:2,自引:0,他引:2  
The metabolism of leukotriene (LT)C4 and its major routes of elimination in vivo have been studied in four anesthetized domestic pigs administered intravenous [3H]-LTC4 (0.5 microCi/kg). The kinetic profile of LTC4 in the blood was followed for 60 min after administration while the biliary and urinary excretion of LTC4 and its metabolites were determined over a 120 min interval. The total recovery of radioactivity in bile and urine was 45% +/- 1 (n = 3) and 18% (n = 2) respectively. Examination of the radioactive metabolites in bile showed LTD4 (44% of biliary content) and LTE4 (21% of biliary content) as the major identified lipoxygenase products at t 1/2 (27 min). The only identified cysteinyl leukotriene observed in the urine was LTE4 (13% of urinary content). In both bile and urine substantial amounts of radioactivity were detected at the solvent front of the reverse phase chromatographic system indicating the presence of additional unidentified metabolites. We suggest that measurement of metabolites using these sampling methods may be useful for the detection and measurement of peptide leukotriene production in vivo.  相似文献   

16.
The biliary excretion of the carcinogen 6-hydroxy-methylbenzo[a]pyrene was investigated in rats after i.p. administration. Mutagenicity of the parent compound and its biliary metabolites was tested in Ames Salmonella/microsome mutagenicity assay. Approximately 40% of the dose administered (0.25-0.5 mg/kg) to the rats was excreted in the bile within 6 h. 6-Hydroxymethylbenzo[a]pyrene was excreted primarily as water-soluble metabolites, including glucuronide and sulfate conjugates. Negligible quantities of unchanged 6-hydroxymethylbenzo[a]pyrene were excreted in the bile. In the presence of Aroclor-induced S9, 6-hydroxymethylbenzo[a]pyrene was a potent mutagen. The mutagenicity of bile from rats treated with 6-hydroxymethylbenzo[a]pyrene was variable in the absence of an activation system. However, the same bile samples were mutagenic in the presence of beta-glucuronidase and/or S9. These results indicate that biliary metabolites of 6-hydroxymethylbenzo[a]pyrene can be metabolically activated to mutagenic species.  相似文献   

17.
The metabolic fate of chlormadinone acetate (17alpha-acetoxy-6-chloro-4, 6-pregnadiene-3, 20-dione; CAP) was studied in intact and biliary fistula baboons. The steroid was labeled with 3H at position 1 and with 14C at the carboxyl moiety of the 17alpha-acetate, thus affording the opportunity to ascertain the loss of the 17alpha-acetoxy group and the fate of both labels. The averages of the radioactivity excreted, given as percentages of the amounts injected, and the standard deviations were as follows: In the urine of intact animals after 6 hours, 5.7 +/- 0.2% and 5.5 +/- 0.7% of the 3H and 14C were recovered, respectively. After 6 days, there was 17.5% of the 3H and 16.2% of the 14C in the urine plus 15.3% of the 3H and 16.4% of the 14C in the feces. In baboons with biliary fistulas, the total radioactivity excreted was 7.8 +/- 0.7% of the 3H and 11.6% of the 14C in the urine, and 30.9 +/- 4.4% of the 3H and 30.7% of the 14C in the bile after 6 hours. Glucosiduronates were the predominant conjugates in the urine and bile. The similarity in the urinary excretion of radioactivity in the first 6 hours in intact and biliary fistula animals, the relatively low excretion of radioactivity in the bile and after 6 days in the urine, and the low fecal excretion suggest that the metabolites of CAP are not involved in an extensive enterohepatic circulation in the baboon. Deacetylation of the 17alpha-acetate in CAP was detected in the early collection periods of the urine and bile and constituted a very small percentage of the injected compound. No significant oxygenation of CAP at position 1 was detected. The metabolism of CAP is discussed and compared to our previously reported data on the metabolism of progesterone, ethynodiol diacetate and medroxyprogesterone acetate and the data on other progestogens reported in the literature. It appears that the excretion of CAP is significantly slower in the baboon than that of the other progestogens. The amounts of glucosiduronates of CAP and/or its metabolites formed in vivo are less than those formed with the other progestogens. Also, the extent of deacetylation of the 17alpha-acetate of CAP is much less than that of the 3beta-acetate of ethynodiol diacetate.  相似文献   

18.
1. Isolated rat liver was perfused with heparinized whole blood under physiological pressure resulting in the secretion of bile at about the rate observed in vivo. 2. The preparation remained metabolically active for 4h and was apparently normal in function and microscopic appearance. 3. When the perfusate plasma and liver cholesterol pool was labelled by the introduction of [2-(14)C]mevalonic acid the specific radioactivity of the perfusate cholesterol increased. The biliary acids (cholic acid and chenodeoxycholic acid) were labelled and had the same specific radioactivity. 4. Livers removed from rats immediately after, and 40h after, the start of total biliary drainage, were perfused; increased excretion rates of both cholic acid and chenodeoxycholic acid were found when the liver donors had been subjected to biliary drainage. 5. The incorporation of [2-(14)C]mevalonic acid or rat lipoprotein labelled with [(14)C]cholesterol into bile acids was studied. 6. A dissociation between the mass of bile acid excreted and the rate of incorporation of (14)C was found. This was attributed to the changing specific radioactivity of the cholesterol pool acting as the immediate bile acid precursor.  相似文献   

19.
1. Administration of (+)-catechin to the guinea pig gives rise to a number of phenolic acids and lactones, which have been identified by chromatographic and spectrophotometric methods. The major phenolic acid metabolite is m-hydroxybenzoic acid and the major lactone metabolite is delta-(3-hydroxyphenyl)-gamma-valerolactone. 2. The phenolic acid and lactone metabolites are excreted in both free and conjugated forms, including their glucuronides and to a lesser degree their ethereal sulphates. 3. Administration of certain of the metabolites isolated has permitted certain sequential relationships of these intermediates to be established. 4. Degradation of (+)-catechin in the guinea pig is effected at least in part by the gut microflora and is suppressed by aureomycin plus phthaloyl-sulphathiazole.  相似文献   

20.
(+)-Catechin and (-)-epicatechin are known to be biologically effective antioxidants present in the human diet, particularly in wine and tea. We studied the metabolism of these compounds to elucidate the truly active structures in biological fluids by their oral administration to rats. Without any treatment with beta-glucuronidase and sulfatase, a pair of metabolites were detected at much higher concentrations in the plasma, bile, and urine than the originally ingested compounds. Each major metabolite found in the plasma at the highest concentration was excreted in both the bile and urine, and was purified from urine. Their chemical structures were established to be (+)-catechin 5-O-beta-glucuronide and (-)-epicatechin 5-O-beta-glucuronide by MS and NMR analyses. These glucuronide conjugates exhibited high antioxidative activities as superoxide anion radical scavengers like their parent compounds. It is concluded that (+)-catechin 5-O-beta-glucuronide and (-)-epicatechin 5-O-beta-glucuronide are the biologically active in vivo structures of the ingested polyphenolic antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号