首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual dimorphism is common in plants and animals. Although this dimorphism is often assumed to be adaptive, natural selection has rarely been measured on sexually dimorphic traits of plants. We measured phenotypic selection via seed set on two floral and four carbon uptake traits of female and hermaphrodite Lobelia siphilitica. Because females can reproduce only via seeds, which are costlier than pollen, we predicted that females with smaller flowers and enhanced carbon uptake would have higher fitness, resulting in either sex morph-specific directional selection or stabilizing selection for different optimal trait values in females and hermaphrodites. We found that directional selection on one carbon uptake trait differed between females and hermaphrodites. We did not detect significant stabilizing selection on traits of either sex morph. Our results provide little support for the hypothesis that sexual dimorphism in gynodioecious plants evolved in response to sex morph-specific selection.  相似文献   

2.
Selection is frequency dependent when an individual's fitness depends on the frequency of its phenotype. Frequency‐dependent selection should be common in gynodioecious plants, where individuals are female or hermaphroditic; if the fitness of females is limited by the availability of pollen to fertilize their ovules, then they should have higher fitness when rare than when common. To test whether the fitness of females is frequency dependent, we manipulated the sex ratio in arrays of gynodioecious Lobelia siphilitica. To test whether fitness was frequency dependent because of variation in pollen availability, we compared open‐pollinated and supplemental hand‐pollinated plants. Open‐pollinated females produced more seeds when they were rare than when they were common, as expected if fitness is negatively frequency dependent. However, hand‐pollinated females also produced more seeds when they were rare, indicating that variation in pollen availability was not the cause of frequency‐dependent fitness. Instead, fitness was frequency dependent because both hand‐ and open‐pollinated females opened more flowers when they were rare than when they were common. This plasticity in the rate of anthesis could cause fitness to be frequency dependent even when reproduction is not pollen limited, and thus expand the conditions under which frequency‐dependent selection operates in gynodioecious species.  相似文献   

3.
Abstract Although pollinator-mediated natural selection has been measured on many floral traits and in many species, the extent to which selection is constrained from producing optimal floral phenotypes is less frequently studied. In particular, negative correlations between flower size and flower number are hypothesized to be a major constraint on the evolution of floral displays, yet few empirical studies have documented such a trade-off. To determine the potential for genetic constraints on the adaptive evolution of floral displays, I estimated the quantitative genetic basis of floral trait variation in two populations of Lobelia siphilitica . Restricted maximum likelihood (REML) analyses of greenhouse-grown half-sib families were used to estimate genetic variances and covariances for flower number and six measures of flower size. There was significant genetic variation for all seven floral traits in both populations. Flower number was negatively genetically correlated with four measures of flower size in one population and three measures in the other. When the genetic variance-covariance matrices were combined with field estimates of phenotypic selection gradients, the predicted multivariate evolutionary response was less than or opposite in sign to the selection gradient for flower number and five of six measures of flower size, suggesting genetic constraints on the evolution of these traits. More generally, my results indicate that the adaptive evolution of floral displays can be constrained by tradeoffs between flower size and number, as has been assumed by many theoretical models of floral evolution.  相似文献   

4.
5.
Theory predicts that the sex ratio of gynodioecious populations (in which hermaphrodites and females coexist) will be affected by the relative female fitness of females and hermaphrodites, and by founder events and genetic drift in small populations. We documented the sex ratio and size of 104 populations of the gynodioecious, perennial herb Plantago maritima in four archipelagos in eastern Sweden and western Finland (from latitude 53 to 64 degrees N). The sex ratio varied significantly both among and within archipelagos (range 0-70% females, median 6.3% females). The frequency of females was highest in the northernmost archipelago and lowest in the southernmost archipelago. As predicted, females were more frequently missing from small than from large populations, and the variance in sex ratio increased with decreasing population size. The relative fecundity of female plants (mean seed output per female/mean seed output per hermaphrodite) ranged from 0.43 to 2.16 (median 1.01, n = 12 populations). Among the 12 populations sampled for seed production (four in each of three archipelagos), the frequency of females was positively related to relative fecundity of females and negatively related to population size. The results suggest that the local sex ratio is influenced both by the relative fecundity of females and hermaphrodites and by stochastic processes in small populations.  相似文献   

6.
Abstract.— Models allowing the coexistence of females and hermaphrodites in gynodioecious populations assume a simple genetic system of sex determination, a seed fitness advantage of females (compensation), and a negative pleiotropic effect of nuclear sex-determining genes on fitness (cost of restoration). In Lobelia siphilitica , sex is determined by both mitochondrial genes causing cytoplasmic male sterility (CMS) and nuclear genes that restore fertility when present with specific CMS haplotypes (nuclear restorers). I tested for a cost of restoration in L. siphilitica by measuring restored hermaphrodites for five fitness components and estimating the number of nuclear restorers by crosses with females carrying CMS1 and CMS2. A cost of restoration appears as a significant negative coefficient (B) in the regression model explaining fitness. I found that hermaphrodites carrying more nuclear restorer genes for CMS2 (or restorer genes of greater effect) have lower pollen viability (B =– 1.08, P = 0.001). This pollen viability cost of restoration in L. siphilitica supports the theoretical prediction that negative pleiotropic effects of restorers will exist in populations of gynodioecious species containing females. The existence of such a cost supports the view that gynodioecy can be a stable breeding system in nature.  相似文献   

7.
In gynodioecious species, sex expression is generally determined through cytoplasmic male sterility genes interacting with nuclear restorers of the male function. With dominant restorers, there may be an excess of females in the progeny of self-fertilized compared with cross-fertilized hermaphrodites. Moreover, the effect of inbreeding on late stages of the life cycle remains poorly explored. Here, we used hermaphrodites of the gynodioecious Silene vulgaris originating from three populations located in different valleys in the Alps to investigate the effects of two generations of self- and cross-fertilization on sex ratio and gender variation. We detected an increase in females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for female and male fertility. Male fertility correlated positively with sex ratio differences between outbred and inbred progeny, suggesting that dominant restorers are likely to influence male fertility qualitatively and quantitatively in S. vulgaris. We argue that the excess of females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for gamete production may contribute to the maintenance of females in gynodioecious populations of S. vulgaris because purging of the genetic load is less likely to occur.  相似文献   

8.
Thymus vulgaris is a gynodioecious species (in which females and hermaphrodites coexist) with a highly variable frequency of females among natural populations (5–95%) and a high average female frequency (60%). Sex determination involves both cytoplasmic genes responsible for male sterility, i.e. the female phenotype, and specific nuclear factors responsible for the restoration of male fertility, and thus a hermaphrodite phenotype. In this study, molecular markers of the mitochondrial genome have been used to quantify the cytoplasmic diversity in 11 clumps of individuals observed in four recently founded populations. The very low diversity within patches in conjunction with the strong diversity among patches strongly suggests that clumps of individuals are the result of single matrilinear families. In clumps that contain mainly females, all the analysed females showed the same cytoplasmic pattern. This pattern differed from that shown by neighbouring hermaphrodites, indicating that the determination of sex is locally cytoplasmic. A comparison of genetic diversity before and after fire in one population showed that disturbances may cause a reduction in genetic diversity and a concurrent induction of local cytoplasmic determination of sex. Such cytoplasmic determination of sex in colonizing populations, together with the greater seed set of females, may largely improve the colonizing ability of the species.  相似文献   

9.
Resources, sex ratio, and seed production by hermaphrodites covary among natural populations of many gynodioecious plant species, such that they are functionally "more dioecious" as resources become more limiting. Strong correlations among these three factors confound our understanding of their relative roles in maintaining polymorphic sexual systems. We manipulated resource availability and sex ratio and measured their effects on relative fertility and phenotypic selection through the maternal fitness of females and hermaphrodites of Fragaria virginiana. Two results were particularly surprising. First, hermaphrodites showed little variability in fecundity across resource treatments and showed strong positive and context-dependent selection for fruit set. This suggests that variation in hermaphrodite seed production along resource gradients in nature may result from adaptation rather than plasticity. Second, although females increased their fecundity with higher resources, their fertility was unaffected by sex ratio, which is predicted to mediate pollen limitation of females in natural populations where they are common. Selection on petal size of females was also weak, indicating a minimal effect of pollinator attraction on variation in the fertility of female plants. Hence, we found no mechanistic explanation for the complete absence of high-resource high female populations in nature. Despite strong selection for increased fruit set of hermaphrodites, both the strength of selection and its contribution to the maintenance of gynodioecy are severely reduced under conditions where females have high relative fecundity (i.e., low resources and high-female sex ratios). High relative fertility plus high female frequency means that the evolution of phenotypic traits in hermaphrodites (i.e., response to selection via seed function) should be manifested through females because most hermaphrodites will have female mothers. Fruit set was never under strong selection in females; hence, selection to increase fruit set hermaphrodites will be less effective in maintaining their fruiting ability in natural populations with low resources and high female frequency. In sum, both sex ratio and resource availability influence trait evolution indirectly-through their effects on relative fertility of the sexes and patterns of selection. Sex ratio did not impose strong pollen limitation on females but did directly moderate the outcome of natural selection by biasing the maternal sex of the next generation. This direct effect of sex ratio on the manifestation of natural selection is expected to have far greater impact on the evolution of traits, such as seed-producing ability in hermaphrodites and the maintenance of sexual polymorphisms in nature, compared to indirect effects of sex ratio on relative fertility of the sexes.  相似文献   

10.
11.
12.
Sex ratio, sex-specific chick mortality and sexual size dimorphism in birds   总被引:1,自引:0,他引:1  
It has been suggested that sexual size dimorphism (SSD) may influence sex ratios at different life stages. Higher energy requirements during growth associated with larger body size could lead to a greater mortality of the larger sex and ultimately to an overproduction of the smaller sex. To explore the associations between SSD and hatching and fledging sex ratio we performed a species-level analysis and a phylogenetically controlled analysis, based on 83 bird species. Overall, there was a significant inverse relationship between the degree of SSD and the proportion of males at hatching and fledging. Sex-specific mortality related to SSD showed a weak but persistent negative tendency, suggesting a mortality bias towards the larger sex. These results suggest that changes in relation to SSD may take place mainly at the conception stage, but could be adjusted during growth. However, conclusions should be treated cautiously as these relationships weaken when additional variables are considered.  相似文献   

13.
  • Habitat fragmentation and small population size can lead to genetic erosion in threatened plant populations. Classical theory implies that dioecy can counteract genetic erosion as it decreases the magnitude of inbreeding and genetic drift due to obligate outcrossing. However, in small populations, sex ratios may be strongly male‐ or female‐biased, leading to substantial reductions in effective population size. This may theoretically result in a unimodal relationship between sex ratios and genetic diversity; yet, empirical studies on this relationship are scarce.
  • Using AFLP markers, we studied genetic diversity, structure and differentiation in 14 highly fragmented Antennaria dioica populations from the Central European lowlands. Our analyses focused on the relationship between sex ratio, population size and genetic diversity.
  • Although most populations were small (mean: 35.5 patches), genetic diversity was moderately high. We found evidence for isolation‐by‐distance, but overall differentiation of the populations was rather weak. Females dominated 11 populations, which overall resulted in a slightly female‐biased sex ratio (61.5%). There was no significant relationship between population size and genetic diversity. The proportion of females was not unimodally but positively linearly related to genetic diversity.
  • The high genetic diversity and low genetic differentiation suggest that A. dioica has been widely distributed in the Central European lowlands in the past, while fragmentation occurred only in the last decades. Sex ratio has more immediate consequences on genetic diversity than population size. An increasing proportion of females can increase genetic diversity in dioecious plants, probably due to a higher amount of sexual reproduction.
  相似文献   

14.
Phenotypic plasticity is thought to be a major mechanism allowing sessile organisms such as plants to adapt to environmental heterogeneity. However, the adaptive value of many common plastic responses has not been tested by linking these responses to fitness. Even when plasticity is adaptive, costs of plasticity, such as the energy necessary to maintain regulatory pathways for plastic responses, may constrain its evolution. We used a greenhouse experiment to test whether plastic physiological responses to soil water availability (wet vs. dry conditions) were adaptive and/or costly in the congeneric wildflowers Lobelia cardinalis and L. siphilitica. Eight physiological traits related to carbon and water uptake were measured. Specific leaf area (SLA), photosynthetic rate (A), stomatal conductance (gs), and photosynthetic capacity (Amax) responded plastically to soil water availability in L. cardinalis. Plasticity in Amax was maladaptive, plasticity in A and g(s) was adaptive, and plasticity in SLA was adaptively neutral. The nature of adaptive plasticity in L. cardinalis, however, differed from previous studies. Lobelia cardinalis plants with more conservative water use, characterized by lower g(s), did not have higher fitness under drought conditions. Instead, well-watered L. cardinalis that had higher g(s) had higher fitness. Only Amax responded plastically to drought in L. siphilitica, and this response was adaptively neutral. We detected no costs of plasticity for any physiological trait in either L. cardinalis or L. siphilitica, suggesting that the evolution of plasticity in these traits would not be constrained by costs. Physiological responses to drought in plants are presumed to be adaptive, but our data suggest that much of this plasticity can be adaptively neutral or maladaptive.  相似文献   

15.
  • Due to ongoing human impacts, plant species increasingly occur in landscapes that are highly fragmented, with remaining natural habitats occupying small areas, resulting in populations that are smaller and more isolated than in previous time periods. This changed metapopulation structure is expected to have negative impacts on seed production. For example, the proportion of female plants within gynodioecious populations may be more volatile due to genetic drift in small populations associated with small habitat fragments, with concomitant impacts on seed production. My aims were to determine: (i) if variation in proportion of females is larger in smaller fragments; and (ii) if such changes in female frequency in small fragments result in reduced seed production.
  • Thirty‐two populations of Lobelia spicata Lam., a gynodioecious species, were surveyed in 2000, 2001 and 2009 in the tallgrass prairie region of Midwestern North America (Illinois and Indiana, USA). Data were collected for: proportion of female plants, total number of flowering plants (measure of population size), seed set per plant and prairie fragment size (another measure of population size).
  • The proportion of females is more variable in smaller prairie fragments. Seed number per fruit decreases as the proportion of females increases in a population, but only significantly for female plants. The number of flowering plants is positively associated with fruit production for both genders. Populations within larger prairie fragments have higher seed production.
  • The reproductive consequences of habitat fragmentation depend on the plant breeding system. While both sexes were negatively impacted, females were more adversely affected.
  相似文献   

16.
The parasitoid wasp Spalangia cameroni oviposited a greaterproportion of daughters in stable fly pupae than in house flypupae, even when I controlled for stable flies being smallerthan house flies. Sex ratio manipulation in response to hostquality has been modeled as being adaptive through an effectof host quality on the size and hence offspring production ofdaughters. 5. cameronis response to host species may insteadbe adaptive through an effect on larval survivorship, the developmenttime of daughters, and the size of sons. There was greater survivalof daughters than sons on stable flies. Controlling for hostsize, I found that development time of daughters was about 2%less on stable flies than on house flies. The decrease in developmenttime corresponds to a 2% increase in fitness as estimated byr, the intrinsic rate of increase, and is equivalent to abouta 9% increase in offspring production. Sons were about 2% largerfrom house flies than stable flies, which may increase offspringproduction by up to 3%. Host species had no consistent effecton size of daughters or development time of sons. In additionto the response to host species, mothers oviposited a greaterproportion of daughters in larger stable fly hosts. Whetherthis behavior is adaptive is unclear. Although offspring werelarger when they developed on larger stable flies, the rateof increase was less for daughters dian for sons. Effects ofstable fly size on offspring development time were negligible.  相似文献   

17.
There has been very little empirical study of quantitative genetic variation in flower size in sexually dimorphic plant species, despite the frequent occurrence of flower size differences between sexual phenotypes. In this study we quantify the nature of quantitative flower size variation in females and hermaphrodites of gynodioecious Thymus vulgaris. In a field study, females had significantly smaller flowers than hermaphrodites, and the degree of flower size dimorphism varied significantly among populations. To quantify the genetic basis of flower size variation we sampled maternal progeny from 10 F0 females in three populations (across the range of variation in flower size in the field), performed controlled crosses on F1 offspring in the glasshouse and grew F2 progeny to flowering in uniform field conditions. A significant population * sex interaction was again observed, hence the degree of sexual dimorphism shows genetic variation among populations. A significant family * sex interaction was also observed, indicating that the degree of sexual dimorphism shows genetic variation among families. Females showed significantly greater variation among populations and among families than hermaphrodites. Female flower size varied significantly depending on the degree of stamen abortion, with morphologically intermediate females having flowers more similar to hermaphrodites than to other females. The frequency of female types that differ in the degree of stamen abortion varied among populations and families and mean family female flower size increased as the proportion of intermediate female types increased across families. Variation in the degree of flower size dimorphism thus appears to be a result of variation in the degree of stamen abortion in females, the potential causes of which are discussed.  相似文献   

18.
BACKGROUND AND AIMS: Species that exhibit among-population variation in breeding system are particularly suitable to study the importance of the ecological context for the stability and evolution of gender polymorphism. Geographical variation in breeding system and sex ratio of Daphne laureola (Thymelaeaceae) was examined and their association with environmental conditions, plant and floral display sizes, and pollination environment in a broad geographic scale was analysed. METHODS: The proportion of female and hermaphrodite individuals in 38 populations within the Iberian Peninsula was scored. Average local temperature and precipitation from these sites were obtained from interpolation models based on 30 years of data. Pollination success was estimated as stigmatic pollen loads, pollen tubes per ovule and the proportion of unfertilized flowers per individual in a sub-set of hermaphroditic and gynodioecious populations. KEY RESULTS: Daphne laureola is predominantly gynodioecious, but hermaphroditic populations were found in northeastern and southwestern regions, characterized by higher temperatures and lower annual precipitation. In the gynodioecious populations, female plants were larger and bore more flowers than hermaphrodites. However, due to their lower pollination success, females did not consistently produce more seeds than hermaphrodites, which tends to negate a seed production advantage in D. laureola females. In the northeastern hermaphroditic populations, plants were smaller and produced 9-13 times fewer flowers than in the other Iberian regions, and thus presumably had a lower level of geitonogamous self-fertilization. However, in a few southern populations hermaphroditism was not associated with small plant size and low flower production. CONCLUSIONS: The findings highlight that different mechanisms, including abiotic conditions and pollinator service, may account for breeding system variation within a species' distribution range and also suggest that geitonogamy may affect plant breeding system evolution.  相似文献   

19.
Using 11 microsatellite markers, genetic analyses of three successive year-classes of gag Mycteroperca microlepis juveniles across the north-eastern Gulf of Mexico revealed a lack of spatial structure and very little temporal variation between year-classes. These results are consistent with long-term effective population sizes on the order of 30 000 adults. The importance of reproductive-style and sex-ratio variation is discussed as an important influence on long-term effective sizes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号